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STATISTICAL MECHANICS

CHAPTER 1
GAS THEORY

(a) Introduction. (b) A Bimplified Model of the Perfect Gas. (c) The

Number of Molecules with a Given Velocity. (d) The Classical Perfect

Gas, Pressure. (e) The Maxwell-Boltsmann Distribution Law. (f) The

Average Velocity. (g) The Number of Molecules Hitting a Wall. (h) The

Mean Free Path. (i) Viscosity. (j) Heat Conduction. (k) Diffusion.
(1) The Scope of Statistical Mechanics.

1a. Introduction

In the theory of mechanics, which treats the motions of bodies sub-
jected to known forces, there enter certain quantities known as integrals
of the equations of motion. These integrals are the quantities which
remain constant in an isolated system consisting of bodies upon which
no forces are exerted from outside the system itself. The most impor-
tant of these integrals is called the energy.

For most simple ideal mechanical systems the energy falls naturally
into two additive terms. One of these, the kinetic energy or vis viva,
is the sum or integral over the system of one-half the product of the
mass by the linear velocity squared. The other, the potential energy,
is a function of the position of the parts of the system alone, and inde-
pendent of the velocities. From these characteristics of the equations
of motion one becomes accustomed to thinking of energy as a quantity
existing in two forms, kinetic and potential, readily convertible into
each other, and actually changing from one form into the other during
the motion of the system.

However, this simple idealisation of the laws of mechanics is never
found to apply exactly to the motions of macroscopic bodies, It is
always necessary, in order to obtain exact agreement with experiment,
to introduce into the theoretical description certain frictional forces,
which have the property of reducing the kinetic energy of the system,
without a corresponding increase in the potential, It is true that in
many almost ideal systems these frictional forces are practically neg-
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2 GAS THEORY [Sec. 1a

ligible, as in the motion of the solar system, but in others they assume
extreme importance.

The investigations of Rumford, in the eighteenth century, followed
by the considerations of Mayer, Joule, and others, showed that the
decrease in the mechanical energy of the system through frictional
forces is always accompanied by a rise in temperature of the system, or
of parts of the system. A new quantity, foreign to mechanics, called
heat, may be introduced, and defined in such a way that the heat pro-
duced in the system is always equal to the mechanical energy lost
through friction. By this inclusion of heat as a third form of energy,
the mechanical statement that the energy of an isolated system remains
constant with time retains its validity, and in this form the law of con-
servation of energy is known as the first law of thermodynamics.

Observations made by Brown in 1827 on particles of microscopic
size suspended in solution showed that these are in a state of continual
random motion, which suggested that the invisible atoms and molecules
making up matter in bulk are not at rest. It is immediately obvious
that, if this motion is real, the system of atoms and molccules composing
bulk matter has associated with it energy, in the form of kinetic and
potential mechanical energy, not different in kind from that associated
with a macroscopic system.

The assumption that the mysterious disappearance of mechanical
energy of a macroscopic system into the heat of its component parts,
due to frictional forces, is merely the conversion of macroscopic mechan-
ical energy into the submicroscopic mechanical energy of the atoms and
molecules, is known as the kinetic hypothesis. In this theory heat is
no longer essentially distinet in kind from mechanical energy. The
theory has been amply confirmed by the remarkable accuracy with
which the properties of bulk matter can be predicted by its use.

This is then the fundamental step of the kinetic theory: to identify
heat with the mechanical energy of the molecules. The motion of these
molecules and their constituent parts may be expected to be governed
by the laws of mechanics. However, it has been found that the equa-
tions of classical mechanics are asymptotic approximations, valid only
for large systems, to the more universal equations which make up what
is called quantum mechanics. With this enlargement of the meaning
of the word mechanics to the quantum-mechanical laws for systems of
atomic size, the motion of the constituents of bulk matter is actually
governed by the laws of mechanics. The laws which bulk matter is
known to obey, the laws of thermodynamics and of physical chem-
istry, are then presumably consequences of the laws of mechanics. The
methods by which these laws can be derived, and by which their numer-
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ical constants can be calculated from the mechanical properties of the
molecules, form the science of statistical mechanics.

The problem appears at first to be somewhat hopeless of solution.
The strict equations of mechanics are difficult to solve for systems
consisting of more than two particles. How can one expect to draw
any conclusions from the application of these equations to systems com-
posed of 1028 particles? The very complexity of the problem is the
secret of its solution. The details of the mechanical motion of the
atoms within a system are unimportant for the calculation of the over-
all behavior of the system, which determines its macroscopic proper-
ties. Certain averages of the system’s characteristics can be calculated
from the mechanical laws governing the motion of its parts, and it is
these averages which are actually observed. In most actual problems
an essential simplification is gained from the fact that there are but a
few different kinds of constituent molecules, although the number of
each kind may be enormous.

In this chapter a rather simple example, that of the perfect monatomic
gas, will be used to illustrate the possibilities of statistical methods.

1b. A Simplified Model of the Perfect Gas

One of the simplest cases, for which very elementary considerations
lead to rather valuable conclusicns, is that of the perfect monatomic
gas. A dilute gas at rather high temperature consists of individual
molecules whick. possess kinetic energy of motion, but which, on the
average, are ~o far away from each other that they exert negligible
forces on each other. Stated somewhat more specifically, only a very
small fraction of all the possible instantaneous positions of all the mole-
cules correspond o a total potential energy which is not infinitesimally
small compared with the total kinetic energy of the system.

If the gas is monatomie it is known from experience that at ordinary
temperature the molecules possess no appreciable internal energy. In
Chapter 6 it will be found that this behavior is to be expected, and
certain possible exceptions will be noted. For the normal dilute mona-
tomic gas the only important part of the total energy is the kinetic
energy of translation of the atoms.

We shall attempt to predict the properties of an idealized system
consisting of N identical point particles, each of mass m, exerting no
forces on each other, and contained in a vessel of volume V, the walls
of which retlect the striking molecules perfectly. N will be assumed to
be a very large number. Since no forces are operative the potential
energy must be independent of the positions of the particles, and will
be chosen as zero. The total energy E of the system will be the kinetic
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energy, the sum of 3mo2 for all the particles. The properties of such a
system may be expected to be very close to those of a dilute monatomic
gas of an element of atomic weight Nom, in which Ny is Avogadro’s
number.

In section 1d, the properties of this system will be calculated without
the introduction of any unnatural assumptions concerning the further
characteristics of the molecules, but in this section the calculation will
be carried out with the use of two entirely improbable assumptions.
It will be assumed, namely, that all the N molecules have exactly the
same magnitude of velocity », and that they move only in the directions
of the three principal Cartesian axes, one-sixth of the molecules moving
in the positive direction, and one-sixth in the negative direction, of each
axiz. If a molecule hits one of the walls, which are tuken to be parallel
to the coordinate planes, its velocity changes sign. It so happens that
the equations derived under these assumptions are the correct ones,
and since the method of derivation is illustrative of the more exact one
to come it appears to be excusable to use these assumptions for pre-
liminary considerations.

The pressure exerted on a wall of the vessel is the force exerted normal
to the wall per unit area. This force arises from, and is equal and oppo-
site to, the change in momentum per second suffered by the molecules
which are reflected from the wall. If one considers 1 cm.2 of wall per-
pendicular to the z axis it is clear that this section of the wall will be
struck in 1 sec. only by the molecules moving toward the wall along
the z axis, and lying, at the beginning of the second, in a rectangular
parallelepiped of length » along the z axis, and with a cross-sectional
area 1 cm.2. If the density of molecules in all parts of the system is
uniformly N/V, the number hitting the wall per square centimeter per
second will be ¥N/6V. Each molecule striking has 8 momentum me
normal to the wall, and, if the molecules are reflected after striking, the
change of momentum per molecule will be 2mv. The total change of
monientum per square centimeter per second is the pressure,

v

P = 2me - %F’
a1 PV = gN(Gm?®) = 3E,

since the total energy E is 3Nmv2.  The pressure-volume product, PV,
is a constant for constant energy of the system, and proportional to the
total energy.

We should prefer, however, to relate the pressure-volume product to
the more easily measured variable T, the temperature of the system,
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rather than to the total energy. Here a difficulty is encountered which
is not connected with the particular system, but rather with the essen-
tially complicated nature of the function 7. It will later be shown that
two such systems as this, if brought into thermal contact so that energy
can flow from one of them to the other, will come into equilibrium in
such a way that the average kinetic energy per molecule is equal in the
two systems. The qualitative definition of temperature is that it be
equal in two systems which are in thermal equilibrium, and that it be
higher in the system from which the energy flows than in the system
which gains in energy if the two systems are brought into thermal con-
tact. It follows that the energy per molecule, ¢ = E/N, is a monot-
onouz function of the temperature alone.

Anticipating this result of later considerations, one sees from equa-
tion (1) that the pressure-volume product can be written

PY = N/(T),

in which f(T) is a monotonously increasing function of the temper-
ature. Until some more specific definition of the temperature is avail-
able one can proceed no further.

Actually, however, the temperature T has first been defined by just
this equation, namely, by setting f(T) = kT, where k = R/Ny is the
gas constant per molecule, usually called the Boltzmann constant.
Its numerical value is k = 1.3804 X 107!® erg - deg.”. The definition
of temperature is made by means of the perfect gas equation,

(1. 2) Pv =X g1 = mt.
No

By combining (1) and (2), a relationship between the kinetic energy
per molecule and the temperature is found

(1. 3) dmo? = §kT.

The equations of this section will be derived in section 1d in an exact
and only slightly more complicated manner. Before doing this it is
necessary to define and discuss a quantity based on an extremely useful
concept frequently met in statistical mechanics.

1c. The Number of Molecules with a Given Velocity

If an attempt is made to determine, in a gas, the total number, or
fraction, of all the molecules which have a certain vectorial velocity V',
defined by the three components v, v,, v;, in the z, y, and z directions,
respectively, the necessity of a careful definition of the term is imme-
diately faced. Obviously, the more accurately the velocities of the



6 GAS THEORY [Sec. 1c

molecules are measured, the fewer will be found to have the prescribed
values of the velocity components.

The difficulty is obviated by defining the quantity N(?7") =
N (v2,04,95) in such a way that N (v;,v,,v,) dv: dvy dv, is the total number
of molecules having velocity components lying between v, and v, + dv,,
v, and v, + dv,, v, and v, + dv,. N (v;,v,,v;) may then be termed the
number of molecules having the velocity vz, vy, v, per unit volume in
the three-dimensional space of the velocities. If dv, dv, dv, were chosen
so small that the velocities of only a few molecules lie in the corre-
sponding range, N (v.,v,,2;) would vary erratically in adjoining regions.
If the regions dv, dv, dv, are, however, chosen large enough to contain
very many molecules, N (7’) becomes a well-defined function, namely,
the density of particles in the velocity space. Owing to the extremely
large number of molecules in real systems, regions which are physically
very small still contain large numbers of particles, so that no difficulty
is encountered in treating N (v;,v,,v,) as a continuous function of its
arguments. If we treat N(?") as a function which is independent of
time, we wish it to signify the average density of particles in the velocity
space. At a given instant deviations from this average density may be
observed, but owing to the tremendous number of molecuies in a real
gas the fractional deviations will be very small.

It will be convenient to define

+o0
(1. 4) N (v, ;”u) = N(”::”wl'z) d”z:

+o0 +oo +o0
N(r.) = f N(vz,ny) dv, f f N (vz,0,,0,) dvy, dv,,
-0

so that N (v;) dv; is the total number of molecules having z components
of velocity between the values v, and v, + du,, irrespective of the values
of the components in the y and 2 directions. The total number of mole-
cules N must be given by
(1. 5)
+ac +w0 A+
N = N(vs) dv, = / N (v,,v,,) dv, dy

-0 -0 —_
+o
- f f N(v,,v,,z,) do, dv, db,.
—m — —

One also tinds use for another quantity, N (v) or N,, defined by the
statement that N (v) dv is the total number of molecules having scalar
magnitudes of velocity between v and v + dv. The scalar magnitude
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v must be equal to or greater than zero, in contradistinction to v;, vy,
and v,, which may be negative. Also

(1. 6) j;wN(v) d=N

The area of the surface of a sphere of radius v is 472. The volume
in the velocity space corresponding to the range of scalar magnitude
from v to v + dv is therefore 472 do.

If the gas is isotropic, that is, if all properties of the gas, including the
distribution* of molecules in the various velocity ranges, are the same
for all directions, it follows that

N@) = N@), if |7
1.7 N@) = 4m®N(?), if v =

The calculation of quantities of the nature of N(?’) and N(v) under
conditions of equilibrium in the system is one of the important tasks of
statistical mechanics.

The value of a knowledge of the dependence of such a quantity, say
N (v), upon its variable, may be illustrated by showing one of its uses.
Suppose that the average value of the kinetic energy of the molecules
composing the gas is sought. The kinetic encergy of one molecule is
zmv?. If this is multiplied by the number of molecules N (#) dv having
the velocity magnitude », and then summed, by means of integration,
over all velocity ranges, the total kinetic energy, E, is obtained as

a0
(1. 8) E = f 3m®N (v) dv.
0

The average kinetic energy per molecule is the total kinetic energy
divided by the total number of molecules, N. If the average kinetic

energy is denoted by 1mv?, we have
(1. 9) -mv2 = ——-f V2N (v) do.

In general, if f(v) is any function of the magnitude of velocity of a
single molecule (in the special case just considered f(v) = 3mv?), then

the average value of this function, f(v), will be given by
—_— 1 r*
(. 10) HORSL f 1@)N (v) dv.
°

*In general, unless the contrary is explicitly stated, the small effect of the gravi-
tational gradient in making the vertical direction unique will be neglected.
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If f(vs)9,,%s) is & function of the three components of the velocity vector
its average value is given by

@ L] L]
110 Foarao = 5 [ f [ 10u920) Huy2) do, doy .

In the special case that f depends only on the combination (3 + o} + 17),
thatis, only on the magnitude of velocity v, the integration over the direc-
tions of the velocity vector in (10’) may be performed immediately;
(10’) then reduces to (10).

Equations (10) and (10’) may be regarded as definitions of the
average value of a function. They represent the sum of the values of
the function for all molecules, divided by the total number of molecules.

1d. The Classical Perfect Gas, Pressure

The system consisting of N identical, independent, point mass par-
ticles in a volume V will again be considered in this section. The
unnatural assumption of equal velocities and of only six directions of
motion wiil not be made, but the justifiable assumption of equation
(7), that the gas is completely isotropic, will be kept.

Let us again calculate the pressure due to the collisions of the par-
ticles on the walls. The pressure is equal to the change in momentum
per second of the particles hitting unit area of wall. The element of
wall considered will be chosen normal to the x axis, and of area 1 cm.2.

In general it would be unjustifiable to assume that every particle of
velocity vz, v, v, hitting the wall was perfectly reflected, and left with the
velocity —wv,, vy, v.. However, since isotropy has been assumed, and
therefore in the assumed stationary state N(v;,0,,0.) = N(—v,0,.0.),
it follows that just as many molecules leave the wall with the velocity
~tz, vy, v, 88 hit with the velocity v, vy, v,, and the total change of
momentum per second experienced by the molecules due to collision
with the wall will be the same as if the molecules were perfectly reflected.
One may, therefore, without loss of generality, calculate the total
change of momentum per square centimeter per second as being the
product 2mv, times the number of molecules of velocity component ,
hitting 1 em.? of wall normal to the z axis, per second, sumimed by inte-
gration over all values of v, from zero to infinity.

A figure including all the vectors ¥* with given components z,, vy, 1y,
whose end points fall in the square centimeter of wall normal to the
z axis, is a parallelepiped of base 1 cm.? and beight ¢, the volume of
which is o, cm.3; see Fig. 1. 1. All the v.N (7")/V molccules of velocity
7 which are in this figure at any moment will strike the square centimeter
of wall within the ensuing second. Integration over all values of Lys )
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equation (4), gives [v:N (v;)/V] dv. as the number of molecules of z
components of velocity between v, and v, + dv, striking 1 em.2 of wall
normal to the x axis per second. Multiplication of this by 2mv,, the
change of momentum per molecule, and integration, gives for the total

Wall
;
2/ %i%
Z /

Fic. 1. 1.

change of momentum per square centimeter per second, equal to the
pressure P,

"0
(1. 11) P= i"—fz j 12N () dr.
0

Since N (z,) = N(—uv;), the integration from zero to infinity is equal
to just half the integral from minus infinity to plus infinity. In view
of (10’), one obtains

(1. 12) PV = 2(im)N,

where E is the average value of vZ. Since isotropy has been assumed,
%= ;,’; = 1%, and their sum is 1%, so that 12 = 12/3, and

(1. 13) PV = 3(3m?)N = 3E.

As before, the pressure-volume product is found to be two-thirds of the

total kinetic energy of the system.
Comparison of (13) with the perfect gas equation, (2), shows that

(1. 14) Im? = kT, E = §NkT,

which is similar to (3) except that now the average kinetic energy per
molecule is used instead of assuming that the kinetic energy is the same
for all molecules.
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le. The Maxwell-Boltzmann Distribution Law

It is interesting to study more closely the distribution of molecules
over the velocity ranges, that is, the functional dependence of N (vz,vy,0:)
on its arguments. In this section, two proofs of the Maxwell-Boltzmann
distribution law will be given.

The first derivation, published originally by Maxwell in his first
paper on the subject, does not consider the mechanism of collisions
between the molecules. This proof, however, is not rigorous, since
it is based on an assumption which should first be proved. Maxwell
assumed that the distributions of the molecules among the components
of velocity in the direction of the three coordinate axes are independent
of each other; in other words, the probability that the z component of
the velocity has the value v, is not influenced by the components in the
other two directions. The number of molecules, N (7'), of the velocity
7', can then be expressed as a product of three functions of v,, v,, and v,,
alone. Since the space is assumed to be isotropic these three functions
must be the same, and, moreover, N (7") can depend only on the magni-
tude of velocity, or if we wish to write it so, on the square of the mag-
nitude, 2 + ¢2 + o7 = o2

These two conditions lead to the relation that

(1. 15) N(®) = f(vz) - f(ry) - f(r:) = F(0?).
If v, = vy = 0, then ©2 = o2, and if the symbol a is used for the value
of f when its argument is zero, a = f(0),
a*f(v;) = F(13),
or, by insertion into (15),
(1. 16) F@?) = a %P 02) - F(2) - F(2?).
This functional relationship (16) is satisfied only if F is of the form
Ae . To show this, equation (16) may be transformed into a dif-

ferential equation by differentiating both sides with respect to 1%, and
then setting v, = v, = 0. The symbol a is defined by

= _a3(%F @)
(1. 17) a a (0(1}5) s’
Since F(0) is a®, one obtains
2
(1. 18) %ﬂ((v-;-)—) = — aF (12),

or
(1. 19) F?) = Ade™™s, N(7') = Ae—*
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The value of the parameters A and « can be determined from the total
number of particles N and the total kinetic energy E of the system.
Before doing this we shall derive (19) rigorously without making the
assumption that the distribution of the molecules among the com-
ponents of the velocity is independent.

In order to do this it will be necessary to consider the collicions
between the molecules in the system. In order to have collisions by
which kinetic energy can be transferred from one molecule to another
it must be assumed that there are forces operative in the system. The
magnitude of the forces, or the laws governing them, need not be known,
but it is essential that they be negligibly small except at distances of
approach between the molecules which are very small compared to the
average distances between them. Only under this condition is the
potential energy negligible for all probable positions of the molecules in
the system. Stated differently, it is important that at any instant an
infinitesimal fraction of the molecules are in the process of undergoing
a collision.

Consider one particular type of collision process, and its reverse,
namely, the process by which particles of the vectorial velocities 7" and
% collide, and emerge with the velocities 7’ and %”, respectively. Since
the sum of the kinctic energies of the particles must remain unchanged
in the collision, the condition

(]. 20) »2 + u2 = v’z + u'2

must be fulfilled

The total number of times that this process occurs in a second will be
called the rate of the process, and must be proportional to the number of
particles of velocity ¥° and ¥ present, thatis, to the product N (7’) - N ().
The rate of the reverse process in which particles of velocities v’ and %’
emerge with velocities 7° and % has to be proportional to N (v") - N(%’).
At equilibrium the rates of the two processes are equal.* We shall
show that the proportionality constants entering into the two rates are
also identical, from which the relation
(1. 21) N(?)-N@@) = N7@') - N@’
between the equilibrium numbers of molecules of velocities ¥*, @, 3"
@’ results. The only solution of (21) with (20) is (19).

That the proportionality constants of the two rates in question must
be equal, if the two particles are unaffected during the course of the

and

* We are assuming complete reversibility, namely, that at equilibrium the rate
of any process and that of its inverse are equal. The fact that this is generally true
is discussed at the end of section 2i.
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collision by the walls or by the other particles of the system, may be
demonstrated in the following manner. Take the point of view of an
observer moving with the velocity of the center of gravity of the two
particles, namely, 2 (7" +%) =3(?"'+ %’) (conservation of momentum;
see Fig. 1. 2). To this observer the two processes, one which converts
velocities 7" and %@ into " and
%’,and the other which converts
7’ and %’ into 7" and ¥, are
exactly similar. In both cases
twomolecules moving with equal
and opposite velocities of mag-
(Velocity of center nitUde%l @—-u)| ='}|(—”"‘".-”)l
\ of sravity approach, collide, and leave
each other with velocities again
oppositely directed, and of the
e original magnitude. The angles
by which the particles are de-
flected are the same for both
particles and for the two proc-
I'lé. 1. 2. Representation of the velocity esses. There is no conceivable

vectors in two-dimensional velocity space, cause, other than the effect of

;ﬁ:&:’gf :;t;;‘tnﬂ.'s'o" between two 41 other particles or the walls

of the system,* which could
make the two absolute rate constants differ. Equation (21) is thereby
proved.

The functional relationship (21), together with (20), has (19) as its
only solution. This can be shown by taking the special case that
v = 0, for which u'? = v2 4 42, Since the space is isotropic, so that
N(7") can depend only on the magnitude, and not on the direction, of
v, one may, as before, write N(7") = F(v?), obtaining

vy

(1. 22) F(0) - F(v® + u?) = F(»?) - F(u?).

This equation has essentially the same nature as (16), and may also be
transformed into the differential equation (18) by differentiation with
respect to u? and subsequent choice of u = 0.

It is readily scen that collisions between more than two particles do
not change this result.

The number N (v) of molecules with magnitude of velocity v, from

* The influence of the distribution of the other molecules in the velocity space is
the cause 91' the difference between the results of this consideration and that of
Chapter 5 ir. which quantum mechanics is employed.
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(7) and (19), is seen to take the form
(1. 23) N(v) = 4x?N(?) = dndv?e ™",

The two constants A and « are calculated from the total number of
molecules N, and the total kinetic energy E, which is related to the
temperature by (13) and (14). In performing these operations two

oz o0
definite integrals, f v%¢™*"* dy and f v'e™**" dr, are encountered. The
0 0

transformation to the new variable z = av?, dz = 2av dv, leads to the

forms
200 o 1.2
j vze-mﬁ dp = _l_a—-312 f V2t dy = _1__(1:)
0 2 0 40: «
o ) 1.0 % . 3 w2
f e dp = —a~0/2 f 231267% fz = - { ':\ .
0 2 )

The values of integrals of this sort are tabuliled in the Appendix, A LI
The condition

NG x A 2
(1. 21) N = J N@ide = 1nd /‘ retedy = A ( )
e Jo

(4
a2
A=N (f>
T
or, with (23),

3,2 .
(1. 25) N () = 4mN (r) (oo

leads to

‘I'he parameter « is necessarily positive, for otherwise the integration
of equation (24) could not have been performed. Indeed, a formula
predicting an infinite number of molecules with infinite velocities is
obviously nonsensical. For the evaluation of « the total kinetic energy
is calculated by the usc of (8), and compared with (14) which equates
the average kinetic energy per molecule to 3k7/2. The steps are:

-] 3/2 0 [A] \s
(1. 26) E = f -l-mva(v) dv = 2rmN (S) f vie P dy = 3mN ’
o 2 L3 0 4a
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and combining the above with (14),

3 3mN
E = ENkT =’
m
(1. 27) ok T

With this value of a the final form of the Maxwell-Boltzmann distri-
bution law is

3/2
(L. 28)  N(7) = N(apyu) = N( Y e

2xkT !
3l2
(1. 29) N(v) = 42N (ﬂ%‘) 2 MY/

The quantity in the exponent, mv2/2kT, is the kinetic energy of the
molecule divided by k7. It will be found, in general, that, in dealing
with molecules having internal energy, the exponential of the energy
divided by kT always occurs in the expression for the distribution of
molecules with respect to the energy.

If the gas as a whole moves with respect to the observer, that is, if the
gas is streaming with the velocity %, the velocities ¥’ of the individual
particles will be distributed randomly about this prevalent velocity.
In this case equation (28) has the form
3/2

c—m(?—i’)’/'&kT

1. 28")  N(¥') = N(vgvye) = N ——
(1L28)  N(P) = Newrn) = N (55
It is readily seen that then the average valuc of 7’ is equal to %.

1f. The Average Velocity

Average values of functions of the velocity vector, or of the velocity
magnitude, may be found with the aid of the functions (28) and (29).

The function N (7") = N (vz,2,,1,), (28), is plotted in Fig. 1. 3 against
the magnitude of the velocity. The function has a maximum at
v; =v, =1, =0, If v, and v, are kept constant and N (?") is plotted
as a function of v, the resulting curve is proportional to the curve of
N(7) plotted against v, is symmetrical in +v, and —v,, decreasing from
a maximum at v, = 0 exponentially to zero on both sides. From this
fact it is immediately obvious that the average value of v, namely,

+o

_ 1
(1. 30) vz = N . 02N (vz,0,0;) dv; dv, dv, = 0,
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since the integrand is positive ;¢
for positive values of v,, and go| "\
antisymmetrically  negative gg N\ P

for negative values of this N\ / | \

varisble. Indeed, the aver- . X \u D ve ]
age value of any odd power ., \ \

of v, vanishes. The average 0-4 I\ \

value of the velocity vector ¥° ' / N \

is therefore * = 0. This fact

/ N\ AN
is inherent in the assumption 02 O N

of isotropy, the assumption o | T N
. 0.0

of equation (7) that no pref- 0.0 0.5 L0 A5 2.0 25

erential direction exists. (zer) *—~

The nature of the fune- puq. 1. 3. Mexwell-Boltzmann Distribution.
tion N(v), (29), is quite Plot of
different. This function is b o
.y 2kT\V? 4
defined only for positive ( N = 55 T e mit/2eT
) : N 729k
values of v, the magnitude d
of velocity. It, also, is plot- kT man
ted in Fig. 1. 3. It rises v o (v) = em/nr
from 0 at » = 0 to a maxi- "
mum at v =1v,, and goes 12
asymptotically to zero as v (2_k7 v

goes to infinity. The veloc- 12
[f ) Ny (21:7' v l]

ity which corresponds to
the maximum, v,, is the

most probable velocity magnitude, or briefly, the most probable velocity.
Its value is determined by the condition that

(aN(v)) -0

0 /o=om
mo2,

(l - m) =0,

2% 1/2
(1. 31) Vyy = (—"-})

The kinetic energy corresponding to the most probable velocity is kT.
The function N (v), (29), may be used to calculate the average of any

power of the magnitude of velocity. It is to be noted that the »th root

of the average of the »th power of the velocity is not the same as the

against

or
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average velocity, v. For the average velocity,

R
v= N 0 v Y = 21’CT 0
m \32 rp) g
=4 (2 k’l‘) ( f
4 112
T ( mT) 2[ ye Ay,

2 (?_’_‘I 1/2 2kT)1/2

(1. 32) 7= — = 1.1283

T - m

is obtained. The average of the velocity squared is

-~ 1 f* 4 (2kT\1 ™ _
(1. 33) »2 = ~J, v2N(v) dv = ;—175(—"‘1')5‘/; Y32V dy
2k

-G

The root mean square velocity is the square root of this:

. 1/2 1/2 1/2
(1. 3¢) (@)= (g) (EE) = 1.2247 (2”')
2 m m

These various averages of the velocity are all proportional to (2kT/m)1/2,
but differ from each other, and from the most probable velocity t, in
numerical factors, not greatly different from unity. The (v 4 1)th
root of the average of the (» + 1)th power of the velocity is always
greater than the »th root of the average of the »th power. In calcula-
tions into which averages of the velocity enter, care must be taken
that the correct average is used. In general, the average value of any
function f(v) of the velocity is given by the integral N~ /f(v)N (v) dv,
equation (10); if the average of a function involving the »th power of
the velocity is sought, the average of this »th power, and not the vth
power of the average velocity, must be taken. For instance, it is the
root mean square velocity, (34), which gives the correct value of the
average kinetic energy. Of course, the average velocxty square, (33),
may Just as well__be calculated from N (vz,v,,v;) by v = v‘ + v’ + vf, or,
gince o = o = o7, simply as 1% = 302

The numencal values of these average velocities are surprisingly
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high. One finds, for mstance, that the average velocity, 7, is 1750
meters per second for Hz at 273°K., and 425 meters per second for O3 at
the same temperature. These hlgh velocities were once regarded as
a severe objection to the theory, since they had to be reconciled with
the observed low diffusion velocities. However, these velocities are
completely random in direction. A molecule makes frequent collisions
with others, so that the macroscopic velocity with which it progresses
through the gas is very much smaller. The theory of the mean free
path, defined in section 1h, is able to predict the correct diffusion veloci-
ties (see sections 1h, i, j, and k).

1g. The Number of Molecules Hitting a Wall

For the calculation of the pressure in section 1d it was found that the
number of molecules with £ component of velocity between v, and
vz + dv, striking unit surface of a wall which is normal to the z axis
is [N (v2)/V] dv, per second. The total number Z of molecules strik-
ing the wall per square centimeter per second is, then,

(1. 35) Z= fl;./;wva(vz) dvs,

or, from the expression (4) defining the function N(r.), and from
(28) giving N (v4,9,,2:),

N m 3,2 o0 -] -} .. 2.3
(l 36) Z =3 (21]‘ T) ‘/o' f f pze—m(v;+v,+r,)/2k7'dvz dvy (l[)"
ooV —o0

where the integration over dv, and dr, is extended from minus to plus
infinity, but that over di; fromn only zero to plus infinity.

The transfermation to new variables, § = (m/2LT)"%v, and an
analogously defined variable in place of », changes the integral over

0
dv, and dr, to the product of two integrals of the type f e dr,
[- <}

each of which has the value #'2., Changing to z = m?/2kT,
dx = (mv./kT) dv, transforms the integral over dr, into an integral of
o0

the type f ¢~ % dz, which has the value unity. One then obtains for Z,
0
LR 2 oK
Z—!Y.!(LT) [f e"‘r’di'] [f e""‘d.t]
V 2xm - 0

N/ kT 1/2
"T(’z;ﬁ) '

(1. 37)
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The use of the perfect gas equation (2), that PV = NkT, so that
N/V = P/kT, enables one to express Z in terms of the pressure, instead
of the number of molecules per unit volume, N/V,

n

(1. 38) Z = @emkT)V2

This, then, is the expression for the number of molecules, Z, striking a
square centimeter of wall per second.
Numerical evaluation of the constants leads to

(1. 39) Z = 3.537 X 1022 ( 1‘];'7“,';'; jg 3¢ em 72,

in which P, is the pressure expressed in millimeters of mercury, and
M is the molecular weight of the gas. ,

The quantity Z is also the number of molecules escaping per second
per square centimeter of hole into a vacuum, provided that the pres-
sure is sufficiently low, so that the mean free path of the molecules is
larger than the diameter of the hole.

It is seen from equation (39) that in hydrogen, of molecular weight
M = 2, at 1 atmosphere pressure, P = 760 mm., and at room temper-
ature, T = 300°K., Z has the value 1.1 X 102* sec.”™® em.”2. The
number of molecules hitting a square centimeter of wall per second
corresponds to approximately 1.8 moles of gas.

1h. The Mean Free Path

The average distance traveled by a molecule between collisions can-
not be so clearly defined, or so unambiguously measured, as the pres-
sure and average energy.

For a rough calculation we shall assume the molecules to act as rigid
spheres. Two molecules of diameters d, and dz, respectively, collide
when the distance between their centers becomes equal to the sum of
their radii, (d1 + d2). In considering the collisions which one speci-
fied molecule of diameter di undergoes we may therefore treat that mole-
cule as a point particle, whereas the others are treated as having their
diameter increased by d;, that is, the molecule n as having the diam-
eter d, + d,,.

Assume the molecule in question, of diameter dj, moving in the
z direction, to be shot into a gas consisting of molecules of diameter da.
E'ach of the gas molecules presents to the approaching one a target of
diameter dy + d, and of area x(di + d2)2/4. The number of such
targets in a plate normal to the z direction, of unit area and thickness
Az, is (N2/V) Az, where N2 denotes the number of molecules of kind 2
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in the system, and V the total volume. The total area covered by these
targets, neglecting possible overlapping, is [x(di + d2)?N32/4V] Az.
The probability that the incoming particle makes a collision in travers-
ing the distance Az is, then, the ratio of the surface covered by the
targets to the total surface, namely,

r PRAL]
4(dl+dz) VM

The quantity
1
(1. 40) -‘ @t ds)’— =7’

having the dimension of a reciprocal length, will be abbreviated by the
symbol 1/I,

The significance of I is that it represents the mean free path, or the
average distance traversed by a particle (of kind 1) before a collision
(with a particle of kind 2). This can be seen in the following manner.
Assume that a number np of particles with velocities of approximately
equal magnitude and direction, chosen as the z direction, enter the gas
at z = 0. Each collision removes a particle from the beam, so that the
number of particles, n(z), arriving st a distance z, is uniformly decreas-
ing. The decrease of n at a place z is equal to the number of molecules
reaching that place multiplied by the probability per particle of a col-
lision, namely,

dn 1
i Az = 7 n(z) Az.
This has the solution
(1. 41) n(z) = noe*'.

The distance z at which a particle makes a collision is called its free
path. The mean free path is obtained by multiplying the path z by
the number of particles colliding between z and z 4+ Az, summing over
all ranges Az, and dividing by the total number of molecules, namely,

o0
(1. 42) --f dndz f Zaligy = |,

which identifies the quantity ! with the mean free path.

At the distance z = I the number of particles in the beam has been
reduced to the fraction ¢? of the initial number, that is, more than half
of the molecules have undergone a collision at some smaller value of z.
The fact that I is nevertheless the mean free path comes about because,
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of the molecules reaching the place z = I, some go very far: a fraction
¢! of them go further than z = 2l before a collision, a fraction ¢72
further than z = 31, ete.

This formula for the mean iree path has been derived by assuming
that one molecule is moving, whereas the others are practically at rest.
If we use this expression for the motion of one gas molecule among
others of the same kind, and therefore of the same average velocity, we
introduce a certain inaccuracy. However, this amounts only {0 a small
numerical factor, which is unimportant in view of the much graver
assumption of rigid molecular diameters.

We find, therefore, within the accuracy of this argument, for a gas
of one constituent,

(1. 4-5) l = ';(}2:\;_ . !\

In a mixture of two gases the total number of collisiuns which one
particle undergoes is composed wdditively of the number of collisions
which it suffers with each kind of particle, We find, therefure, {or
the mean free path I; and [z of each kind of particle

(1. 44) Iy = AV{dxdiNy + w(dy + d2)2N2) 1,
lo = 4V (r(dy + d9)2N, + 4wdiNg) %

To obtain an ides of the order of magnitude of the mew- Hive path
one can ure the equation of state of ‘the perfect gas to replace the den-
sity N/V in Uhy P/7kT, obtaining

(1. 45) [ = o

At room temperature, T = 300°K., and if ihe diameter d is measured
in Angstrom units, that is, in 107% ¢m., onc finds

(1. 46) 1 = 132(Pdg?)™.

This relation gives ! in centimeters if the pressure is measured in c.g.s.
units, namely, in dynes per square centimeter. If P is measured in
millimeters of mercury the relation hecomes

(1. 47) l- P = 0.1(dg)7%,

with I in centimeters. For atoms and simple molecules the diameter d
is a few Angstrom units, so that the mean free path in millimeters times
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the pressure in millimeters is about one-tenth. With d = 5 one
obtains the following numerical results:

P P P [
dynes per cm? mm of Hg atmospheres cm
1 7.5010 X 104 9.8697 X 1077 5.3 o
) 1.332 X 10% 1 1.3158 X 1073 39 X 1073
1.0132 X 10° 760 —1 5.2 xX10°¢

The average time between collisions is obtained by dividing the
mean free path by the average velocity. At roum temperature the
velocity is of the order of a hundred meters per second, so that the time
between collisions at atmospheric pressure is about 107! sec. One
molecule of a gas at standard conditions undergoes about 10?? collisions

per second.

In this development the assumption furthest from the truth is the
representation of the molecules as rigid spheres. It is due to this simpli-
fication that a mean free path independent of velocity, and therefore

independent of temperature, was obfained.

Actually, the molecules

exert long-range attractive forces and short-range repulsive forees upon

one another.

It is then obviously rather difticult to define a collision

und a mean free path, since each particle is at any time interacting
with others, and is constantly suffering slight deflections of its path.
This is borne out by experiments with sharply defined molecular beams*

in almost perfect vacuum.

The effective cross section of the remaining

gas particles appears then to be much larger than that caleulated from
gas kinetic data, since a very small deflection effectively removes a
molecule from the beam. However, a very small deflection corresponds
to a transfer of only a small amount of momentum and energy and is
therefore of no importance for the transfer of heat or the viscosity of

gases.

A hetter approximation for the expression of the mean free path was
obtained by Sutherland} by representing the molecules as hard spheres,

of diameter dg, which, in addition, attract one another.

An appreci-

able deflection of one molecule is obtained only if its sphere touches

another one, and only in this case shall we speak of a collision.

If a

fast molecule travels past another one which is at rest, it will be but

* O. Stern, Z. Physik, 89, 751 (1926).

t W. Sutherland, Phil. Mag., (V) 886, 503 (1893).
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slightly deflected. A slow molecule, however, approaching along the
same line, may be deflected so much that it touches the other one, that
is, it makes a collision. The effective cross section of a molecule in a
collision depends then upon the relative velocity, and the average cross
section upon temperature. One obtains

(1. 48) d’=d§(1+%>,

where the quantity C, the Sutherland constant, is determined by the.
nature of the attractive forces.
1i. Viscosity

The mean free path enters into the theories of all phenomena of
propagation of physical properties over macroscopic distances. These
are notably the transport of momentum, which is connected with the
viscosity of gases; the transport of encrgy, or heai conduction; and
the transport of mass, or diffusion. These three processes will be
treated here in a rather crude manner. The averaging over different
molecules will be done somewhat incorrectly, so that numerical factors
are quite untrustworthy. A more exact theory, however, becomes
very complicated.

The mechanical set-up in an experiment for the determination of the
viscosity of gases is usually such that the gas is contained between two
parallel plane plates a distance a from each other. The plates may be
taken to be parallel to the zy plane and located at the height z = 0
and z = a, respectively. The lower plate is kept at rest, while the upper
one is moving with a constant velocity u in the 2 direction.

If the distance a between the plates is large compared to the mean
free path the gas *““sticks” to the plates: near the upper plate, at
z = a, the average velocity of the molecules is ¥, = %; near the lower
one, at z = 0,9, = 0. The average velocity at a height z between the
two plates will be denoted by #(2) (compare end of section 1e). Since,
owing to the random motions of the particles, equally many molecules
from above and from below reach the height 2, the average velocity
u(2z) will be a linear function of the height, namely, u(z) = uz/a. If
the mass of the gas particles is denoted by m there exists a lincar drop
of average momentum

muz

(1. 49) G) = —

Although equally many molecules from above and from below reach
the height 2 during a second the ones from above will, on the average,
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bring with them a greater value of G than the ones from below. There
will therefore be a constant flow of momentum' through any vertical
plane. This flow, through a squarc centimeter per second, will be
denoted by I'(z) and will be calculated presently. If the flow in the
positive z direction i~ calculated, I'(2) will be negative.

The momentum orriving at the lower plate, —I'(0), represents the
force per square centimeter of surface which tends to move the lower
plate in the same dircction as the upper one. —TI'(a) is the momentum
lost to the gas by the upper plate per square centimeter of surface per
second, or the frictional force counteracting the uniforin motion.

The ensuing calculation of I'(z), the flow of the phyisical quantity G
per second through a square centimeter parallel to the ry plane at the
height z, will hc done without making use of the special form of G'(2).
The result may then be taken over immediately for cases in which any
physical property G(z) varies with
height.

The number of particles of veloc-
ity ¥ = (v5,9,,v;) which pass in a
second through the square centi-
meter in question is, precisely as
discussed in the calculation of the
pressure in section 1d, equal to
the number of particles which are
located at the beginning within a parallelepiped the base of which is
the square centimeter and the length of which is 9. The height of
the figure is thercfore | v, |, its volume | v, |, and the average number
of particles in it | v, | X N(vz,,2,)/V. If v,>0 the particles cross
the surface from below; otherwise they come from above. The net
flow of particles through the square centimeter, that is, the surplus of
particles going from below to above, is obtained by integrating
v; X N (vz,v,,2,)/V, without the absolute value sign, over all veloc-
ities. In a stationary state the net flow of particles must be zero.
If the velocity component +v, occurs just as frequenily as —u,,

that is, if the variation of G with height docs not influence the
-]
distribution of the z component of the velocity, f VN (v5,0,,0;) dug is

-0

obviously zero.

The particles arriving at the height z have traveled in a straight line
since they underwent their last collision. On the average, they will,
since that time, have traversed the distance I, if I signifies the mean
free path. The last collision of a particle with veloeity 7” has therefore,
on the average, occurred at a height 2’ which is given by 2’ = z — (v,1/v).
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The assumption is now made that at that collision the particle has
come into equilibrium with its surroundings. The average value of
the quantity G which the particles of velocity v’, coming from the height
2/, bring with them is then

(1.50)  G() = Glz — @l/n)] = G(z) — "7’ : %:E.

The net flow of G, namely, the difference of the amount of (¢ carried
up through the plane and the amount carried downward, is obtained
by multiplying (50) by the number »,N(?")/V of particles crossing the
surface in the positive direction, and integrating over all velocities,

(. 51) r(z)=o(z)ff N(;)v,dv,dv,dv, -‘

. :
aG N (V")
"Efff’“vv_ de do, do,.
-

The first term, G(z) times the excess of particles streaming through the
element of plane in one direction, is zero in the stationary state. The
second term may be simplified by considering that in an isotropic space,
on the average, v = o2 = vZ = (1/3)»2. Actually, in the problem
treated here, the velocity in the z direction is somewhat different owing
to the average motion of the substance in the z direction. However,
the plate velocity u is very small compared to the gas kinetic velocities.
One obtains then

(1. 52) I'(z) = — - l— 5.

The minus sign in the formula shows that the flow takes place in the
direction from higher to lower G values. If dG/dz is positive the flow
in the +2z direction must be negative.

In the special case of transport of momentum, according to (1. 49),
dG/dz = mu/a, one finds
(1. 53) r=— miy

Wl
<I=
Qi

The frictional force per square centimeter of surface acting on the
upper plate is usually written

F=-",
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7, the cocfficient of viscosity, has, according to (53), the value

1N

(1. 54) n=3 —v-,mlﬁ.

If cquation (43) for the mean free path is inserted in (54), one obtains

L 55 ___1 mp
(1. 55) T 3x a2

The average velocity v is, according to (32),7 = 2(2kT/xm)''2. This
leads to

172 3/2 (ka)lI2
(1. 56) n = 3(7) e

This equation predicts that the coefficient of viscosity is independent
of the density, or the pressure, a function of temperature only. This
result was first deduced theoretically by Maxwell and considered at
that time to be rather startling. Subsequent experimentation con-
firmed the theoretical conclusion over a wide range of pressures. That
the viscosity is independent of the pressure has since been regarded as
a strong support of the kinetic theory.

Gibson,* for instance, has measured the viscosity of hydrogen at
25°C. in the pressure range from 11 to 295 atmospheres. The vis-
cosity 5 is 894 > 1077 poise (gm. em.™* sec.”?) at 10.92, 12.66, and
15.28 atmospheres. It then increases gradually to 901 X 107 at 60
atmospheres, and 958 X 1077 at 294.7 atmospheres. The gradual
increase does not exceed that expected from deviations from the perfect
gas law, which are considerable at the higher pressures.

The fact that the density N/V drops out of equation (56) comes
about in the following manner. The number of particles arriving per
second at the height z is proportional to the density. The mean free
path, however, is inversely proportional to the density: at increasing
density the molecules have made their last collision closer to the z plane
in question and therefore bring with them values of G which are more
nearly equal to G(z).

At very low pressures deviations from (56) are observed; n begins
to decrcase. This is due to the fact that the assumption that the gas
sticks to the plates becomes invalid when the mean free path is compa-
rable to the distance a between the plates (see Problem 1. 4).

Equation (56) predicts further that the viscosity increases propor-

*R. O. Gibson, Dissertation, Amsterdam, 1933, given in Landolt-Bérnstein,
Eg. IlIa, p. 189.
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tionally to T'2. Actually, a much stronger dependence on temper-
ature has been observed. If, instead of a temperature-independent
molecular diameter, the Sutherland approximation (48) is used, one
obtains

(1. 57) _1 (2)"’ (mkT)1/2

§ d3(1+)

where the constant C, a function of the attractive forces, is unknown.
If C is properly adjusted, satisfactory agreement between observed and
calculated data is obtained.

1j. Heat Conduction

If there is a gradient of temperature in the z direction, the average
energy per molecule, € will vary with height. We wish to calculate the
flow of energy through a plane at the height z and therefore, in the
equations of the previous section, have to replace the quantity G by

(1. 58) Gle) = 2(2), =22,

de/dT is connected with the heat capacity Cy at constant volume. Cy
is defined as the increase of energy with increasing temperature for a
mole of substance; that is, for No molecules, if No is Avogadro’s num-
ber,

dE de
1. 59 = — = —_
(1. 59) Cy aT No T
This leads to
(1. 60) d¢ _ Cy dT
dz Np dz

By inserting (60) into (52) the flow of heat through a square centi-
meter parallel to the zy plane at the height z is found to be

(1. 61) I'(z) 1,NC ar

This is usually written
I'(2) = —x—-
"The heat conductivity, «, i8 then

(1. 62) 1, N Cy

x=-l— — .

V No
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Comparison with (54), considering that mNy is the molecular weight.
M gives the relation

C
(1. 63) K= I’—ﬂ‘-’
Cy/M = cy is the specific heat per gram of substance, so that ncy/x = 1.
A more exact theory still predicts this quotient to be constant, but
somewhat different from unity. In Table 1. 1 the quotient has been
calculated for a few monatomic gases* from the values of « and » given

in Landolt-Bornstein. ¢y was calculated from the energy relation (14)
and the molecular weight.

TABLE 1.1
Substance x X 108 n X 108 cv ncy/x
Helium......... 33.63 19.41 0.745 0.402
Neon.......... 10.92 31.11 0.149 0.424
Argon.......... 4.08 22.17 0.74 0.404

x in cal. cm.™ sec.™ deg.”!; 7 in c.g.s. units; cy in cal. degree™.

1k. Diffusion

If two vessels connected by a tube with a stopcock are filled with two
different gases, and if the stopcock is then opened, molecules will flow
from the vessel witn higher pressure to that of lower pressure. If pres-
surc and temperature on both sides of the stopcock are equal there will
be no streaming of gas. However, owing to the random heat motion,
particles of kind 1 will drift into the vessel which originally contained
particles of kind 2 only, and vice versa, until finally both vessels are
filled with a uniform mixture of the two gases. This phenomenon is
called diffusion.

For the calculation of the rate at which this process takes place an
idealized experiment is considered. Assume a tube (of infinite diam-
eter) to be filled with a mixture of two gases of kinds 1 and 2. Let the
axis of the tube be the z direction, and assume that the composition of
the mixture varies along z. The density of molecules of kind 1, that is,
the number of molecules of kind 1 per cubic centimeter, which shall be
denoted by 71, and the density of molecules of kind 2, n2, will then be

* We have compared here data for monatomic gases only. For these gases the
total energy is the kinetic energy of translational motion, equation (14). Poly-
atomic molecules possess, in addition, internal energy (Chapter 6). It is question-
able whether this energy will be readily transferred from one molecule to another
in every collision.
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functions of z. If we stipulate that pressure and temperature are uni-
form throughout the vessel, the equation of state of the perfect gas
demands that the total density of molecules, n = n1(2) 4 nz(2), be
constant everywhere. This leads to

(1. 64) nem@) tmE); Do

Since the distribution of velocities is independent of the density of the
gas, the number of particles of each kind per cubic centimeter with a

certain velocity v” may be written
(1. 65)  ni(7,2) = m@2)f1(P),  n2(7,2) = n2(2)f2(¥),

where f; and f2 are independent of z. Indeed, f1(7") is essentially the
Maxwell distribution function, only normalized in such a fashion that

-]
f f f1(?") dv; dvy dv, = 1. The average magnitude of velocity of

—o0
the particles of kind 1 is independent of z and given by

(1. 66) B = fj'f [0 /1(7) dos do, dv,.

A corresponding equation holds for molecules of kind 2.

The random motion of the molecules tends to bring about a uniform
mixture of the gases. If dni/dz > 0, that is, if the concentration of
particles of kind 1 is greater at larger height, there will be an excess of
these particles streaming through a plane at the height z in the down-
ward dircction. The net flow of particles of kind 1, through an area
of 1 em.2 of the plane perpendicular to the z axis, at the height 2, in the
direction of positive z, T'1(z), will then be negative. It is usually
written

(L. 67) () = -0, 2,
dz

where Dy is the diffusion constant.

The flow is calculated in precisely the same manner as in section Ii.
A particle of kind 1 and velocity ¥’ arriving at the height z comes, on the
average, from a height 2/ = z— (v,1;/v), where I; is the mean free path
?f the molecules of kind 1. The density of such molecules at that height
is

(1. 68) m(?,z') = n;(z')fl(?) = nl(z)fl(?) - ';;!l], dny

'd—z‘fl(?).
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The number of such particles crossing a square centimeter of a plane
at the height 2z in the +2z direction per second is then

(1. 69) v (9,2") = ni (D fi(V) — = 11 ‘ﬂfl(”)

"The expression (69 1s poxitive for ail particles coming from below, that
is, with v, > 0; negative for those coming from above. The excess of
particles going in the positive direction, I'j, is, therefore, obtained by
integrating (69) over all velocities. The first term vanishes, as before,
leading to

(1. 70) ri(z) = —zl@—‘fff—f,(v)du,du,du,

The integral is simply the average value of t?/v. Since all directions

of the velocity are equally probable, v?/» = (1/3)s. The diffusion
constant of the molecules of kind 1 is therefore

(1. 71) Dy =}ho,.

Similarly, one obtains for the flow of particles of kind 2

(. 67) ry = —D; M2
dz

with

(1. 71') Dy = :‘-lz va.

By inserting into these equations the value of the mean free path
(44) one obtains

4
(1. 72) Dy = 51;171 [4md? + na(dy + d2)?7,

4
(1. 72') Da = ‘—“- v2 [n1(dy + d2)* + 4'&;(1 I~ -1,

The D’s are inversely proportional to the density. If n is expressed
with the help of the perfect gas law, n = N/V = P/kT, one obtains

4 kT 1
(1. 73) D = —}9[4 1;1 &+ % (dr + dz)’T )

3x
(1. 73") D; = = kTv2[ (dy + d2)* + 4 f’ ]
3r P
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It is seen that D; and Dz depend on the relative concentrations, n;/n,
na/n, but not very strongly, since the diameters of the molecules will
not be vastly different. If the difference between the diameters is
neglected one gets a relation between the diffusion constant of a gas
and its viscosity coefficient,
Va
D~y —-.

Nm

This equation can at least be used to obtain the order of magnitude of D.
In general, the two diffusion constants D; and D2 for the two kinds
of particles arc different, D; 3¢ Ds. It is then easily seen that the
constants calculated in this manner cannot possibly be those which
are observed in a closed tube. The total flow of particles in® the
+z dircction may be calculated by using the relation (64),
dn, dng dny

(1.74) F'=T14Te= —Dl—Zz—-—ng = —(D1 —Dz)-dTD

and it is seen that this does not vanish. This means that the density
of particles, n, and thercfore the pressure, do not remain constant
throughout the tube, but, if I' is positive, increase in the upper part.
This absurd result is usually corrected by assuming that upon the cal-
culated diffusion there is superimposed a uniform motion which just
counteracts the increase in pressure. This uniform motion corresponds
to a velocity —I'/n per particle, and a flow — (n1/2)T and — (nz/n)T
of particles of kinds 1 and 2, respectively, through a square centimeter
at the height z in the 4z direction.

If this flow is added to the one previously calculated, one obtains the
corrected diffusion

(1. 75) M=1-2r="p_ My,
n n n
=—(ED1+ED2 _d..'_"._ _Dtd.;n_'
n n dz
1. 75 = — (" mop \dre _ _padnz
( ) 2 <nD1+nDz = D 7

The new diffusion constant D* is equal for the two kinds of particles.
The particles of kind 1 diffuse downward just as rapidly as those of
type 2 diffuse upward, and the pressure remains constant.

It is seen that D* depends greatly upon the composition of the mix-

ture. The diffusion rate will therefore be considerably different at dif-
ferent heights in the tube.
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11. The Scope of Statistical Mechanics

The problems and methods of the preceding few sections are quite
typical of the problems and methods of statistical mechanics. It is
true that they were particularly chosen as illustrative because their
handling required the introduction of a comparatively small number
of new terms and concepts, and also required no preliminary elaborate
build-up of general principles. As more complicated, and more gen-
eral, problems are undertaken, it will be found advisable to shorten the
total labor necessary to solve all of them by the preliminary proof of a
number of general theorems, and the development of general methods
which will find wide applicability. It is essentially these theorems and
methods which make up the science of statistical mechanics.

One of the most characteristic features of the usual statistical mechan-
ical problem is the enormity of the number of elementary particles
which go to make up the system treated. In dealing with the perfect
gas, the assumption of a large value of N was necessary to assure the
very cxistence of a constant pressure on the walls of the vessel and to
lend a useful significance to the velocity distribution function, N (v).
The statistical method makes possible the calculation of the probability
of any arbitrary distribution, and for many sciences, notably the bio-
logical and sociological sciences, in which investigations are made with
systems containing a relatively small number of units, the calculation
of the probability of an abnormal distribution is of importance. In
physics and chemisiry it is true that experiments exist which show the
presence of fluctuations from complete equilibrium, and statistical
mechanics has been applied to the calculation of the probability of such
fluctuations, but this part of statistical mechanics will not be of such
great interest to a chemist. In most chemical and physical systems,
the deviations from the equilibrium value shown by most of the observ-
able properties which one attempts to calculate by statistical methods
are cither infinitesimally small or negligibly rare. It is sufficient to
calculate the most probable, or the average, value of the observable
property, and to treat this as though it were the only possible solution.

In section le it was found necessary to assume the existence of forces
between the molecules, in order to assure the existence of a mechanism
by which equilibrium could be established. However, it was unneces-
sary to specify the nature or magnitude of these forces, except to assume
that they were not too large. One of the greatest advantages of the
science lies in the ability to obtain general results without the necessity
of too detailed a knowledge of all the characteristics of the material
bandled.

In this particular case, the calculation of the Maxwell-Boltzmann
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distribution law, the dependence of the force acting between two mole-
cules on the distance between them, determines the frequency of col-
lisions in the gas, and therefore the rate at which the equilibrium dis-
tribution of the molecules in the various velocity ranges would be
attained. This rate, of course, was not calculated. We have no method
of ascertaining, without recourse to a more complicated calculation,
whether it might take fractions of a second, or years, to attain equi-
librium. We know, however, what to expect after equilibrium has been
attained. This is characteristic of many of the methods and problems
of statistical mechanics, problems in which the static properties of the
material are calculated; the mechanism by which the stationary. state
is reached has no effect on the results, but, conversely, the speed with
which equilibrium is attained is not determined. i

Certain very important relationships between some of the experi-
mentally measurable properties of a system may be deduced by means
of thermodynamics, As will be shown later in this book, the laws of
thermodynamics may be explicitly derived as consequences of the
fundamental assumptions of statistical mechanics. Thermodynamies
may then be regarded, to a certain extent, as a part of statistical mechan-
ics, Many who are more familiar with the thermodynamic .method
will consequently hasten to formulate many statistical problems in
thermodynamic terminology, and to solve them by thermodynamic
methods,  For that reason, one of the most useful services of statistical
mechanies is to give a preseription for the caleulation of the values of
the thermodynamic funetions of a system from the mechanical proper-
bies of its constituents.

One of the more recent and, for the chemist, one of the most fruitful
accomplishments of statistical mechanies has been the uccurate caleu-
lation of the free energy, entropy, and specific heat of many of the
simpler gases from spectroscopic information.

In the examples treated so far, no fundamental assumptions were
magde except the validity of the laws of mechanics. This will be found
to be generally true. The fundamental axioms of statistical mechan-
ics are the fundamental laws of mechanics. Statistical mechanics is,
as the name implies, the application of the statistical method, with the
laws of mechanics, to systems for which, because of their great com-
plexity and size, the detailed methods of mechanics would be valueless,
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2a. Introduction

Although the axioms of statistical mechanics are those of mechanies,
no great familiarity with the more detailed methods of mechanies is
required for the application of statistics to a system. One may go far
iu statistical mechanics with a rather clementary knowledge of the laws
of mechanies or of quantum inechanies.

The necessary axioms and concepts will be diseussed in some detail
in this chapter. Before entering upon this task we wish to sum them
up in a few words. The most accurate deseription of the instantaneous
state of a systens vbeying the laws of (lassical mechunies consists in
giving the values of all the coordinates of the system, und of all the
moments conjugated to the coordinates.  If f, the number of degrees
of freedom of the system, is the total minimum munber of coordinates,
then the 2f dimensional coordinate-momentun: space is called the phase
space of the system,

‘The point describing the state of the system moves through this phase
space along a puth, and with a velocity, determined by the laws of
classical mechanics. The caleulation of this path and velocity may be
a very complicated problem, and fortunately concerns us practically
not at all.

The only property of the motion of this point through the phase
space which it is necessary for us to know and to use is the following:
If a system, known to have an energy lying between E and E + AE, is
isolated, so that its state point moves through the phase space belong-
ing to this energy range, it will, on the average, over a long period of
time, spend equal times in equal volume elements AW of the phase
space, whatever their location.

33
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It is this property of the phase space, or coordinate-momentum space,
which makes it uniquely useful in the description of the mechanical
state, and which leads us to choose it, rather than, say, the coordinate-
velocity space, for the description of the state of the system.

That the knowledge of this one theorem stating the equal probabili-
ties of equal volumes in phase space is so powerful a tool may be illus-
trated as follows: Every conceivable instantaneous property of a
system is determined by the 2f values of the f coordinates and f momenta.
In short, any function, such as the pressure P on a certain area element
of the wall of the container, may be expressed as a function of the
position of the system in the phase space. This pressure P will actually
vary with time, but its time average value represents the pressure which
is experienced thermodynamically. Since the system spends, on the
average, equal times in equal volume elements dW of phase space,

consistent with given total energy, the average pressure P will be

P = S PdW/JS dW, the average value in the phase space, where both
integrals are taken over that region of phase for which the energy lies
between E and E + AE.

All real systems obey the laws of quantum mechanics, which are
somewhat different from those of classical mechanics. Our language is
then slightly altered, although the fundamental concepts are not greatly
different.

Quantum mechanics is characterized by the occurrence of stationary
states of discrete energy. The coordinates and momenta of the system
in one of these states are determined only within a certain range, so
that the quantum state corresponds to a cell of volume A/ in the phase
space. These cells fill up the phase space completely. The quantum-
mechanical analogue to the classical theorem of equal probability of
equal volumes of phase space has then the simple form: All (non-
degenerate) quantum states of the allowed energy are equally probable.

This theorem of equal probability for the quantum states, with some
very general characteristics of the methods of counting the states of a
system from those of its parts, is all that is used in Chapters 3 and 4 of
this book to derive the general laws of thermodynamics, and to show
the methods by which the thermodynamical properties of a system may
be calculated.

In the subsequent chapters these methods are applied to special
systems. It then becomes necessary to use some of the more detailed
results of quantum-mechanical calculations for the constituent mole-
cules. For instance, the equations for the energy levels of monatomie,
diatomie, and polyatomic molecules in terms of their quantum numbers
are used in calculating the free energies of gases composed of these



COORDINATES 35

molecules. Actually, the numerical values of the energy levels are
always taken from experimental spectroscopic tabulations.

It is not necessary for the student to be able to solve the relatively
involved differential equations giving the energy levels of these mole-
cules, or even fo know how the solutions are made. The results of the
solutions are actually used as type forms into which the experimental
data can be fitted, and serve as useful methods of extrapolating energy
values for the higher quantum numbers.

In the subsequent sections of this chapter we have gathered all the
mechanical information that is needed later. The fundamental con-
cepts are discussed in detail and illustrated with some simple systems.
These examples have been chosen as those for which the energy levels
have to be used in later calculations.

The one fundamental theorem of equal probabilities of quantum
states, or equal phase volumes, is stated and proved, both as a quantum-
mechanical, and as a classical, theorem.

2b. Coordinates

In order to treat the system mathematically it is necessary to intro-
duce coordinates, by which the position of each constituent is described.
There exists a fixed minimum number of coordinates which are needed
to determine fully the position of a particle. For all cases that interest
us here this number coincides with the number of degrees of freedom
and will be denoted by f. If the particle is a point in space it is f = 3;
for two mass points which are restricted to stay at a fixed distance from
each other (dumb-bell) we have f = 5, ete.

The coordinates for the description of a particle can be chosen in sev-
eral different ways. For a point particle, for instance, we may use
Cartesian coordinates, z,y, 2, cylindrical coordinates, or spherical
coordinates, but invariably three will be required. When the forces
acting on the particle are known, convenience will usually dictate the
choice. For example, the positions of two mass points acting upon
each other with a force dependent only on their distance, r, can be
described completely by the Cartesian coordinates of each point. It is
more advantageous, however, to introduce six new coordinates, namely,
the distance, r, between the points; the three coordinates of the center
of mass, X, Y, Z, and two angles, which determine the orientation of
the main axis, the line joining the two mass points. These angles are
usually measured with respect to a courdinate system fixed in space,
in such a way that 6 denotes the angle between the main axis and the
fixed z axis, ¢ the angle between the projection of the main axis on the
zy plane and the z axis. If the distance between the mass points is
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rigidly fixed, the last five of these coordinates alone determine the
position of the system completely. The same coordinates can be
used to describe the position of an infinitely thin rod. If the rod is
restricted to motion in a plane only, throe coordinates, two for the
center of mass and one angle, are sufficient.

If the set of coordinates used is not explicitly specified they will be
referred to as generalized coordinates, and designated by the letter g.

2c. Momenta

The state of motion of the system is defined by the values of the
coordinates ¢, and the velocities, that is, the derivatives of the coor-
dinates with respect to the time. Time derivatives will always be
denoted by a dot, namely, dg/dt = §. Instead of the velocities we
prefer to introduce the generalized momenta, which are obtained with
the help of the kinetic energy. .

The kinetic energy of one mass point is given by the well-known
formula (2), which follows. For a system of several mass points the
total kinetic energy, T, is obtained by adding the kinetic energies of the
individual points. The Cartesian coordinates of the mass points, which
will, in general, not be independent, can now be expressed as functions
of the generalized coordinates ¢. By differentiating these relations with
respect to the time, and putting them into the expression for T, one
obtains the kinetic energy as a function of the generalized coordinates
and velocities, T(g,§). (The one symbol g is always meant to stand
for all the coordinates, gi, ¢g, - - -, gr, and correspondingly ¢ for all the
velocities. If the system has f degrees of freedom T will depend on all
J velocities ¢, and may depend on some or all of the coordinates, that is,
it will be a function of between f and 2f variables.)

The momentum conjugate to the coordinate g,, designated by p., is
defined as the partial derivative of the kinetic energy with respect to the
velocity g¢,,

aT
(2' 1) Py = :37’ °
For example, the kinetic energy of one point particle has the form,
2. 2) T = jm@@ +¢* + ),

where m denotes the mass, and Cartesian coordinates have been used.
This leads to the ordinary relation between linear velocity and linear
momentum,

aT
(2. 3) % = p, = mi; Py = My; Ps = mé.
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Relations (1) can always be used to express the velocities as functions
of the coordinates and the momenta and to eliminate the ¢’s from T,
obtaining instead T as a function of the coordinates and the momenta,
T(g,p). In this special case we find

1
@ 2) T (404 22)-

The kinetic energy of two mass points with masses m; and my can be
expressed either in Cartesian coordinates as the sum of two expressions
of the type (2), or in the coordinates of the center of mass, X, Y, Z,
the distance r, and the angles 8 and ¢, discussed in section 2b. In the
latter coordinates it takes the form

m + my

@4) T=—_ " (X*4 T4 2%+
P mmg ., mmg
2m,+m (6 +mn0¢)+2ml+m2r

Introducing the abbreviations: the total mass M = m; + ms, the
reduced mass u = mymy/(m; + my), and the moment of inertia
I(r) = ur?, this becomes,

2. 4) T=3MX2+ Y2+ Z%) + 31(6? + sin®0 ¢°) + Lpi®

From this, according to (1), one obtains the momenta,

(2. 5) pe=MX, P, = MY, p.=MZ,
(2. 6) pe=I1(r)6, p, =1I(r)sin’ g,
2.7 Pr = pi.

The first three expressions are analogous to those obtained in (3) for p,
as a function of z. In fact, the momenta conjugate to the Cartesian
coordinates of the center of mass are always given by (5). p, and
Py are two components of the angular momentum 7’. p, is the compo-
nent along the z axis, (6 = 0 axis), and pg that in the variable direction
normal to both z and the main axis. Elimination of the velocities out
of ('), with the help of (5), (6), and (7), leads to

2.4y T =@+ +D+

"M
'V (2 1 2) A2
21(r) (”‘ t i Pe) TP
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If the distance r between the two particles is rigidly fixed, # will
be zero, the last term in (4), (4’), and (4’’) will be absent, and the
moment of inertia I will be a constant. In this case the coordinates
and momenta obtained can also be used to describe an infinitely thin
rigid rod, with M the total mass of the rod, and I the moment of inertia
with respect to the center of mass; or, indeed, to describe any rigid
body for which one of the three principal moments of inertia is zero
and the other two are equal.

It is important to notice that it follows from (1) that the product of
a coordinate and its conjugate momentum has always the dimensions
of energy multiplied by time.

2d. Classical Mechanics and Phase Space

In all mechanical problems concerning us here the forces acting on
the particles of the system will depend on the position only and, more- .
over, will be of the special type called ¢onservative forces. This means
that there exists a function U of the coordinates of the system, called
the potential energy, which has the property that the force acting on
any point particle constituent of the system in any, say the z, direction
is given by the negative derivative of U with respect to the z coordinate
of that point,

au

(2. 8) Fp = el
For forces of this nature the law of conservation of energy holds: the
sum of kinetic and potential cnergy of the system is constant during
the motion. This theorem will lead us immediately to the first law of
thermodynamics.

If we express T as a function of the coordinates and momenta, we
shall designate the sum of the kinetic and potential energies by the
letter H, and have, therefore, the relation

2. 9) H(p,q) = T(p,g) + U(g) =

where E denotes the constant value of the energy. H(p,q) is called
the Hamilton function of the system. It should be pointed out that in
more general cases than those considered here H (p,q) may not coincide
with the encrgy.

Using the Hamilton function, the equations of motion can be expressed in
the so-called canonical form

@. 10) . _ O . oH
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If the forces between, and the outer forces acting on, the particles
are given, the laws of classical mechanics (for instance, in the form
[10]) permit the calculation of the motion of the system, that is, of the
numerical values of all the coordinates and the momenta, as a function
of time. There exist very many different solutions of the equations of
motion. For a system of f degrees of freedom the motion is uniquely
defined only if 2f arbitrary ‘‘initial conditions” are prescribed, for
instance, the numerical values of all the coordinates and momenta (or
velocities) at a certain time 4. Exact knowledge of the state of the
system at one time enables one to determine its exact behavior in the
future.

Instead of fixing the 2f arbitrary constants of the solution by giving
the initial values of the p’s and the g¢’s, it is of course equivalent to
stipulate the initial values of any 2f independent functions of the coor-
dinates and momenta. Since the energy is fully determined by the
initial conditions and, moreover, remains constant during the motion,
it is very often preferable to choose these functions in such a way that
the energy is one of them.

A useful concept for the illustration of the motion of the system, and
one that plays an important role in classical statisties, is the ‘‘ phase
space,” a space of 2f dimensions, the axes of which are all the coor-
dinates and momenta of the system. At any time the state of the
system is given by one point in this space; in time the system travels
along some perfectly fixed path, which ean, in principle, though not
always in practice, be caleulated from the laws of mechanics. Through
every point in this space there passes only one possible orbit of this
system.

Since, as we have already noted, the product of any coordinate and
its conjugate momentum has the dimensions of energy times time, the
dimensions of a volume element of the phase space of f coordinates and
f momenta will be those of the f’th power of energy multiplied by time.
If different coordinates are chosen for the description of the same
system, phase spaces are obtained in which the paths of the system look
entirely different. The dimensions of the volume element in two dif-
ferent phase spaces of the same system are the same, however. Further-
more, it can be shown that all points filling the volume element AW
in one phase space of the system fill preciscly the same volume in any
phase space obtained by different coordinates.

It can be seen readily that a mere change of scale of one coordinate
of a system does not alter the phase volume, since, from equation (1),
a change from z to ' = az brings about a change in the corresponding
momentum from p, to p,;’ = p./a, if the units of cnergy and time are
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held constant. The general proof can be found in Gibbs* that the
Jacobian leading from one set of coordinates and conjugate momenta
to another such set is unity.

The reasons for choosing the space of coordinates and momenta
instead of that of coordinates and velocities, or of coordinates and some
other functions of the velocities, are intimately connected with these
considerations, and with the Liouville theorem, discussed in sec-
tion 2j.

For one point partiole which is restricted to motion along a straight
line, the z axis only (bead on a string), the phase space has two dimen-
sions, and the coordinates z and p;. If the point is under the influence
of no forces, the Hamilton function consists of the kinetic energy
T = (1/2m)p2, and the equations of motion lead immediately ta
Pz = 0, or p, = constant. The possible paths of the system consist
therefore of straight lines of constant p,, parallel to the x axis. If the
particle can move in a plane, with coordinates z and y, the phase space
has four dimensions. In the absence of outer forces, p; and p, are con-
stants, and the paths of the system are again straight lines, lying in the
two-dimensional planes of constant p, and p,, normal to the p, and p,
axcs. Elimination of the time from the equations for the path shows
that the z and y coordinates are connected by the relation pax —
pzy = constant.

The points corresponding to one value of the energy E form a sur-
face of dimension 2f — 1 in the phase space, which divides the space
into two parts, one of higher and the other of lower energy. Obviously,
surfaces of different energy do not intersect. The paths or orbits of a
system lie in these surfaces. In the first example quoted, the surfaces
of constant energy coincide with the lines of constant p.; in the second
one they are three-dimensional, independent of z and ¥, and their inter-
sections with the p,, p, plane form circles around the origin, p? + p =
2mE.

We will later be interested in systems made up out of N independent,
identical subsystems (the molecules), which we shall, for convenience,
term particles. The phase space of the individual constituents of
dimensions 2f is called the u-space (the molecule space). The con-
figuration of the total system is given by N points in this y-space. The
phase space of the total system, in which one point describes the loca-
tions and momenta of all particles, has the dimension 2fN, and is
called the y-space (the gas space). These concepts will be used con-
tinuously in subsequent chapters.

* J. Willard Gibbs, Collected Works, Longmans, Green, New York, 1928, Vol. II,
Part 1, p. 14.
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2e. The Uncertainty Principle

Quantum mechanics introduces a change in these concepts of the
motion of a system in phase space. Classical theory always takes for
granted that all coordinates and momenta can be measured with any
desired accuracy; that the reaction upon the system of the act of meas-
uring a quantity can be made arbitrarily small, since the sample body
with which we measure can be made as small, and the light by which
we see as weak, as we want. Now we know that this is not so, and that
there is not only an experimental but even a theoretical limit below
which the influence of the measurement on the measured system cannot
be suppressed. The measurement of a coordinate of a particle neces-
sarily changes the momentum conjugate to that coordinate, by larger
amounts the more accurately the measurement of the coordinate is
made, and changes it in an unpredictable way.

The type of argument by which this is shown may be indicated by an
example. If, for instance, we want to measure the position of an
electron (or even the position of a larger body) with the help of an ideal
microscope, we cannot possibly hope to determine it within a smaller
range, Ag, than the wavelength, ), of the light by which we are observing;
light of short wavelength will therefore be more advantageous. For
the measurement we have to use at least one quantum of energy, and
for light of frequency » this has the energy hv and the momentum hv/c,
in which h is Planck’s constant of dimensions energy multiplied by time,
and numerical value 6.626 X 10727 erg second, and c¢ the velocity of
light. In the process of measurement the quantum transfers all, or
part, of its momentum to the measured particle, so that after the obser-
vation the momentum p of the particle will be altered by some amount
which can be as much as hv/c. Since v - X = ¢, the product of the range
Ag, within which ¢ was determined, and the range Ap, within which p
was changed by the measurement, is at least

(2. 11) Ap-+Ag = h.

Similarly, an observation of the momentum brings about a change in
the coordinate. On account of this reaction of the measured system to
the measurement it is impossible, even with an idealized experiment, to
determine both the coordinate ¢ and its conjugate momentum p for any
system exactly, and all quantitative investigations show that they can
be determined simultaneously only within accuracies Ag and Ap, respec-
tively, such that (11) holds. .
Now it is one of the characteristic features of quantum mechanics
that it answers questions of experimental significance only; statements
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range* a ¢ function satisfying these conditions can be found only for
certain discrete values of the energy E, called the energy levels of the
system. These levels can be numbered consecutively by integers n,
the * quantum numbers,” in such a way that n = 0 usually designates
the lowest energy level of the system, higher n’s corresponding to higher
energies. We denote energy and y function belonging to the nth level
by E, and ¢¥,. For these systems of one degree of freedom the phase
space is two-dimensional and the points of constant energy form non-
intersecting lines in it. The lines corresponding to the energies E, of
the permissible levels subdivide the phase space into cells. The volume
of these cells, really an area of physical dimensions energy multiplied
by time, is exactly h. The statement that the system has the quantum
number n is then the most accurate possible description of its state that
can be made without violation of the uncertainty principle. A quan-
tum-mechanical state is therefore defined by the quantum number. .

The occurrence of discrete energy levels is an experimental charac-
teristic of the behavior of atoms and molecules. Classical mechanics
was unable to explain this phenomenon, since by its laws the energy
can always have a continuous range of values. In systems of large and
heavy bodies the levels lie so close together that the energy is for all
purposes continuous, and classical mechanics is the limiting case of
quantum mechanics, applicable to large and heavy bodies.

For systems of mwore than one degree of freedom the wave function
will depend on all f coordinates. |y(qy,- - - gy) |?Aq; - - - Agy is the
probability of the coordinates having simultaneously numerical values
between ¢, - -, g, and g1 + Aqy, * * - g7 + Agy, respectively. Every
discrete energy level can be designated by f quantum numbers
n,, - - -, 0y, each capable of taking integral values only. The quantum-
mechanical state of the system is defined if all f quantum numbers are
known,

The states of the system are packed into the phase space in such a
way that each corresponds to a volume #/. That means that the num-
ber of quantum states having energies lying between E; and E, will
become equal to the volume of phase space between these energies,
divided by A7, if the interval between E; and E; is not too small. The
quantum-mechanical state gives a description with the greatest accu-
racy allowed by the Heisenberg principle.

It will sometimes happen that several sets of quantum numbers
correspond to the same value of the energy, in other words, that for

.‘Ifthevolumeavaihbletothesyltemininﬁnitetheenergylevelsmynotbe
discrete (compare section 2g, example 1). The complications arising from this are
overcome here by always considering finite, although possibly very large, volumes.
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one energy value we obtain several, say g, different, linearly independent
eigenfunctions. In that case we say that the level is g-fold degenerate,
or that it consists of g states. A state, according to our definition, is
always non-degenerate.

In general the prescription for the calculation of the wave function is the
same as for one degree of freedom; p,, the momentum conjugate to the coor-
dinate gy, is replaced by the differential operator (k/2m1)(9/dg,) in the Hamilton
function. The wave functions are the solutions of the partial differential
equation:

h 3 h @
@. 12') H(ﬁé&w'ﬂﬁia_q,,qx,-~-.q: Wy an)

=E"”(Qh'“,q!)-

¥ and its derivatives must be continuous and finite, and the ‘‘normalization”
condition is

@. 13" f..-fw(qx,---,q;)|=dq,---dq,=1.

If the range of the ¢'s is finite this condition can always be fulfilled by multi-
plication of ¥ with a suitable constant, for ¢y is also a solution for the same
energy value as ¥ and will, of course, not be called a different solution.

It follows from the nature of the differential equation (12’), namely, from
the fact that it is linear and homogeneous in y, that, if two ¥ functions are
eigenfunctions belonging to the same energy value E, their sum and difference
are also solutions of the equation. Therefore, out of the g wave functions of
the same degenerate level one can construet in many ways g linearly independent
combinations which describe the degenerate level just as well as the original
functions. This means that a degenerate level is made up of single states, the
total number of which, g, is fixed, but the single states themselves are not unam-
biguously detined.

2g. Quantum States of Some Simple Systems

A few examples are given of systems the energy states of which are
to be used later.

Ezample 1. A point particle moving in field-free space. From a classical
point of view this system has already been discussed in sections 2¢ and
2d. Since the potential energy is constant the total energy is kinetic and
the Hamiltonian is given by equation (2'),

H =T = (1/2m)(® + 5} + 7).
The wave equation in this case is

w2V )
-8—;2;; 5_3_’+ay’ agf) E ¢("try;’)r
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and the most general solution is given most conveniently in the complex* form:
¥ = const. 271/ R) (24P utp,2),

with -—-(pz+p,+p)-

Since solutions with positive and negative components of p belong to the same
energy value all levels are degenerate, and we can also use linear combinations
of the exponential, for instance, the sine and cosine functions, as solutions.

Let us first assume that the particle is restricted to motion in one
dimension, along the £ axis, only. If the space is truly infinite, that is,
z can run from — o to 4 =, then therc are no discrete energy levels,
and the system can have any amount of energy. The eigenfunctions
are complex exponential functions, so that | ¢ |? is a constant, that is,
the particle can with equal probability be found at any point in space.
The momentum p, is then sharply defined, in agreement with the
uncertainty principle, since the value of the coordinate is absoltitely
undetermined. In this case the ¢ function cannot be normalized,
corresponding to the fact that the probability of finding the particle in
any finite range, Az, of the coordinate z, is zero. If, however, the
particle is restricted to a space of length I, that means 0 < z < I, and
if the walls at zero and ! are assumed to be perfectly reflecting, so that
the energy of the particle remains unchanged, then in classical theory
the particle will be reflected back and forth between the walls. In
quantum mechanies this imposes a boundary condition on the ¢ fune-
tion. Obviously, if the walls are perfectly reflecting, the probability
of finding the particle outside should be zero, which is to be expressed
by ¢ = 0. Since the ¢ function is to be continuous in space, ¥ has to
be zero at the boundary, namely, at x = 0 and at £ = . This condi-
tion can be fulfilled only for certain discrete values of the energy, and
therefore of the magnitude of the momentum, namely, for

1 h?
(2. 14) |Pz|—-£ k., E=§ﬁl)§=§rz?k:’
where k; is any positive integral number. All energy levels are non-de-
generate. The eigenfunctions are sine functions

(2. 15) V= \/'sm—-—p,:c ?m,k—;—z

* The complex number e may be resolved into its real and imaginary parts by
means of the equation ¢ = cosa + isina. It follows that the absolute value
squared is always unity, |e®|? = cos®a +sin®a =1. It is seen that, for
6 = 0, x/2, =, 3x/2, and 2r, the value of e®® is 1, i, —1, —1, and 1, respectively.
The function ¢* is periodic with the periodicity 2x in a, €' = ¢''® +"’
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If the particle can move in three dimensions, but is confined to the
inside of a cube of side length I, volume V = {3, with perfectly reflect-
ing walls, each state is characterized by three integral, positive num-

bers, k., k,, k,, which we may regard as components of a vector ¥ of
magnitude k. The three components of the momentum are

h
21 %

so that the magnitude p of the momentum is proportional to the magni-
tude k. The energy levels are given by

R, h? 0
= 8mV”"k = 8myes W + K + k),

and the eigenfunctions are products of sine functions

@16 Ipl=gk Inl=gke Inl=

1
2. 17 = —— p?
( ) E om P

3/2
(2. 18) ¥y = () sm-r-—— smrl%l sinw k;z_

Here we find that most of the levels are degenerate. The energy is
determined by the magnitude p of the vector 7, but in general there
will exist several vectors 7 of different orientations with the same total
magnitude. This corresponds to states of motion with the same veloc-
ity but differing directions of propagation. For instance, the state
given by k; = 1, k, = 2, k, = 3 has the same energy as the one for
which k; = 2, k, = 1, k, = 3, and several others.

Ezample 2. The harmonic oscillator. A system with one degree of
freedom in which the force is proportional to the displacement, g, from
an equilibrium position, ¢ = 0,

2. 19) m§ = Fg = —aq,

is called a simple harmonic oscillator. m designates the mass, The
Hamiltonian of this system is

_1 . @,
(2. 20) H(p,q) =P +2q

and the solution of the classical equation of motion is
(2. 21) q = bcos2mv(t + a), 2rv = Va/m.

The motion is periodic with the frequency »; b and a are the two arbi-
trary constants which can be adjusted to fit any initial conditions for
g and p(= mg).
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In quantum theory the energy levels of this system are all non-de-
generate and equally spaced,

(2. 22) E,=(v+5),

where h is Planck’s constant, » the classical frequency of vibration, and
v can be any integral number from zero to infinity. It turns out that
even in the lowest state, v = 0, the oscillator has the energy 3h», the
‘ zero point energy,” whereas classically the state of lowest energy is
the state of rest with zero amplitude and zero energy.

We shall meet the oscillator equation when we consider the vibrations
of molecules. The coordinates ¢ will then be the normal coordinates
of the modes of vibration, which sometimes depend in a rather compli-
cated manner on the coordinates of the individual atoms. The corre-
sponding masses will be combinations of the masses of the atoms. In
the special case of diatomic molecules g is simply the difference between
the actual and the equilibrium distances of the two atoms, and the mass
is the reduced mass. (See example 4 of section 2h.)

Ezample 3. The rotator. A rotator is a body the position of which
at any moment is fully characterized by the two angles which give the
direction of a straight line, its main axis, in space. We want to con-
sider the case where no outer forces are acting on the body. This
system is realized by a mass point tied with a string to some point in
three-dimensional space. The motion around the center of mass of an
infinitely thin rod, or a dumb-bell which can rotate about any axis in
space, obeys the same laws.

The coordinates of this system are the 8 and ¢ described in sections
2b and 2¢, where also the corresponding momenta are calculated. The
Hamiltonian of the system is given by part of (2. 4’') and is

LY SRR T
(2. 23) =3 (Po + sinZa Ih) .
The classical calculation shows that the motion always consists of rota-
tion with uniform angular velocity in a plane, so that the total angular
momentum P is a constant, and the energy E = (1/2I) P2.

The quantum-mechanical states are characterized by two integral
numbers, j and m, where j can take any positive value from zero to
infinity, whereas m has any value between —j and j, so that |m | < j.
j determines the total angular momentum by the equation

2. 24 B2 _ 0 LAY
(2 24) P m+1)(2,)

(h/2x)m is equal to the projection of the angular momentum vector on
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the 2z axis, and its magnitude must therefore be equal to or smaller
than j. m corresponds to the orientation of the classical plane of
motion. The energy depends only on j and is given by

2
(2. 25) B =5 (F) =i6+ Do

Therefore all energy levels except the lowest one for which j = 0 are
degenerate, the degree of degeneracy being given by the number of
values of m consistent with a fixed value of j, which is 2j + 1.

The preference of the z axis is arbitrary and due to our choice of coordinates.
A different choice of axes would bring about different ¥ functions which are,
however, only linear combinations of the original 2j 4 1 eigenfunctions belong-
ing to the same energy value, in agreement with the fact that the single states
that make up a degenerate level can be chosen in different ways, as discussed
in section 2f,

Ezample 4. The symmetrical top. One more system the energy
levels of which will be needed for the discussion of polyatomic mole-
cules is the so-called symmetrical top, moving with fixed center of
gravity under the influence of no forces. The symmetrical top is a
body for which two principal moments of inertia are equsl, denoted in
the following by A, the third one being denoted by C. The system
has three degrees of freedom, its position can be characterized by three
angles, and therefore each energy state by three quantum numbers, j,
m, and k. j can have positive values only, whereas m and k can also
take negative values, but are both restricted to lie between —j and j:
jm| £j,|k| £j. The energy levels are

2. 26 E hz{" 1-1— l-—k’]
(2. 26) j.m.k=8r2](l+ )A+(C a)¥]
Since m does not occur in E and k and —k lead to the same value, it is
seen that a level with k = 0is (2j + 1)-fold, one with k = 0,2(2j + 1)-
fold, degenerate.

The simple rotator is the limiting case of the symmetrical top for
C = 0. Finite energy levels are then obtained only if k = 0, and these
coincide with those given by equation (2. 25).

2h. The Combination of Independent Systems

In the future we shall very often be interested in systems which con-
sist of two or more, and indeed usually of very many, subsygtems,
which are independent of one another. It is therefore important to
know how the eigenfunctions and energy values of the total system
depend on those of its parts.
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By the statement that two systems, a and b, are independent we
mean that the motion of one system is not in any way influenced by the
state of the other one, that is, that no forces are acting between the two
systems. This finds its mathematical expression in the statement that
the Hamilton function, H, which for all purposes of this book is the
energy as a function of the coordinates and momenta, is a sum of two
parts, H, and H,, H, depending on the coordinates and momenta of
a, H} on those of b only:

(2. 27) H = Hy(pa,9a) + Hy(ps,0).

In that case the eigenfunction ¢ of the total system, the combijnation
of the two independent parts, a and b, is the product of the elgenfunc-
tions ¢, and ¢,

(2. 28) V=t '

and the energy E is, as one would expect, the sum of the energies E,
and E; of the subsystems.

(2. 29) E = E; + E.

A state of the total system is defined by the quantum numbers of the
two independent parts. For this treatment it is completely imma-
terial whether the subsystems are near or far, equal or very different.
The only condition is independence. For truly identical subsystems
some of the quantum states 6f the total system are not realized in
nature, as will be discussed in section 2k.

A special case of this occurs if in a system the motion of one coor-
dinate is not influenced by the motion of the others, so that the portion
of the Hamiltonian containing this coordinate and its momentum
behaves, mathematically, like that of an independent system. Classi-
cally this means that the variables are separable,

Ezample 1. We have already encountered one example of this in
section 2g, example 1. The three Cartesian coordinates of a particle
moving in a field-free space occur not at all, the momenta only in three
additive terms in the Hamiltonian. The boundaries, and therefore the
boundary conditions, each involve only one coordinate. The motion
in the z direction is completely independent of that in the z or y direc-
tion. The eigenfunction of the particle, therefore, can be written as a
product of three functions, each depending on one coordinate only. The
energy is the sum of the kinetic energies of each component.  Since, fur-
thermore, the motion in all three directions is subject to the same condi-
tions, the possible states and energies are the same for each component.
In this way equations (17) and (18) can be derived from (14) and (15).
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Ezample 2 is that of the dumb-bell discussed in section 2¢, which is
subject to no outer forces, so that the total energy is kinetic and given
by (4’") with the last term containing p, omitted,

=__1_ 2 2 2 1( . 1 2)
(2.30)  H = (p:+ 5+ p)) +2I(Po+m% :

Here the motion of the center of mass does not influence the rota-
tion, since the part of H depending on X, Y, Z, does not involve 8 or ¢,
and vice versa. If we again assume the particle to be confined to a
cubic space of volume V = I3, with perfectly reflecting walls, the eigen-
functions and states of the translation of the center of mass are the
same as those of a point particle in this space, (17) and (18). A state
of the total system is determined by the state of translation and of
rotation (see section 2g, example 3) namely, by five quantum num-
bers, k;, k,, k., and j and m. The energy of the state is

r? h?
(2. 31) E=w(k3+k§+kf)+§;ﬁi(i+l)-

Let us now assume that in this dumb-bell model the distance r
between the two mass points is not rigidly fixed, but that the points
are tied together by a weightless spring. We will then have an addi-
tional term in the kinetic energy, (4’’), and also a potential energy
depending on r, which, at least for small deviations from the equilibrium
distance ry, is proportional to the square of this deviation, ¥ = (r — ry)?,
so that the total Hamilton function becomes

_ Y a2 2 2 1 (., _1_2)

(2 32) —ZM(P3+Py+P3)+2I Po+siu201’¢ +
1., 0,
2"Pe+2€-

The additional last two terms are the Hamiltonian of an oscillator,
(20), with frequency 2x» = \/a—/p, the energy levels of which are given
by (22). These terms are also independent of the coordinates of the
center of mass. However, oscillation and rotation interact, since the
part of the Hamilton function which contains p; and p, also contains
I(r) = pr®. The moment of inertia changes during the vibration, and
the centrifugal force displaces the equilibrium position. However, if
neither rotation nor oscillation is very large, these effects are of second
order, so that one can treat the motions roughly as independent, by
replacing I (r) by the moment of inertia at equilibrium, I, = wrg. With
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that simplification the energy states of the oscillator-rotat?r are defined
by the six quantum numbers k, ky, ks, j, m, and v, and given by

@ 33) E = By, + Bt + By,
s Ly 1 h(v-{-.l.).
=W(ﬂ+k3+ﬂ)+8ﬁl(}+ )+ Ay 3

This approximation to the energy of the levels is not always good
enough for exact calculation. In Chapter 7 we will take into account
the deviations from this equation.

Ezample 3. A system: consisting of one atom is described by the
three coordinates of the nucleus and the three coordinates of position of
each electron. In addition, each electron has a spin of 4, that is, an
angular momentum of 4 measured in units of (k/2r), which can have
either of two possible orientations. The spin of the nucleus will be
designated by s,, an integer or half integral number, which can have
(28, + 1) different orientations. The magnetic moment associated
with the nuclear spin is extremely small, so that the interaction between
it and the electrons can be neglected, and all orientations of nuclear
spin have the same energy.

If no outer force is acting on the atom, the motion of the center of
mass, which practically coincides with that of the nucleus, can be
separated from that of the other coordinates. The energy consists
then of the sum of translational and electronic energies, the former
being given by (17). We will fix the zero of energy in such a way that
the energy of the lowest electronic level is zero. The energy of the
next level is usually very much (several electron volts) higher than that
of the ground level, so that, as will be seen in Chapter 6, it will not
affect our statistical calculations. For these cases, the energy levels of
the total system, the atom, can simply be represented by (17). It has
to be borne in mind, however, that a state of the total system is defined
by all quantum numbers, translational, electronic, and spin. If, there-
fore, the electronic ground level is g,-fold degenerate, owing to electron
spin or for other reasons, and if the nuclear spin has the magnitude s,,
each level determined by k;, k,, k, in (17) is g = g,(2s, + 1)-fold
degenerate, that is, it consists of g single states of the total system.

Ezample 4. A diatomic molecule, moving under the influence of no
outer forces, is also a system for which the motion of the center of
mass can be separated. Again the higher electronic levels can
usually be neglected, since they have so high an energy that they are
not excited at ordinary temperatures. The motion of the electrons,
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owing to their smaller mass, is very much faster than that of the nuclei,
with the result that they act on the nuclei like a stationary cloud of
negative electricity. In this cloud there exists an equilibrium distance
between the two nuclei, that is, a distance of least energy. This posi-
tion will, of course, be different for different electronic levels.

For deviations from this equilibrium position the electronic cloud
exerts a force on the nuclei which is, in the first approximation, propor-
tional to the displacement. In addition, the axis of the nuclei in space
is not fixed so that the whole system can rotate. Consequently, for
any given electronic state, the system can be approximately represented
by an oscillator-rotator whose Hamiltonian is given by (32). Since
the electrons are very light, the moment of inertia is determined by the
distance between, and the masses of, the nuclei, only. The energy
levels of the molecule are therefore given approximately by (33).

However, there will be deviations from this equation, due, first, to
the fact that the force acting on the nuclei is not exactly proportional to
the displacement, but also contains higher powers of £, so that the
vibrations are not purely harmonic; and, second, to the interaction of
rotation and vibration discussed under example 2,

If the electronic level is g.-fold degenerate, and if the nuelei have spins
Sn1 and s, respectively, the levels of (33) have a further degeneracy
in addition to that due to the 2j + 1 different values of the quantum
number m, for every value of j, namely, each level defined by k., k,,
k., j, m, and v, corresponds to g = g.(2s,; + 1)(28,2 + 1) states of
the total system. If the nuclei are identical, some of these states are
not realized in nature, as will be discussed in section 2k and Chapters
6 and 7.

2i. Equal Probability of Single States

We will later be interested mainly in systems which consist of very
many (10%%) individual particles, and which, therefore, have a very
great number of degrees of freedom. In that case the possible energy
levels, which are determined by f quantum numbers, are usually con-
siderably degenerate and lie close together,so that for practical pur-
poses they are continuous. We will be interested in knowing the
density of this continuum, that is, the number of quantum states of
the system the energies of which lie in a range AE, between E and
E 4+ AE. If we chose the range AE too small, the number in question
would be small and would vary erratically with E. If, however, the
value of AE taken is large compared to the difference between the
energies of neighboring levels, the number will be large, approaching a
smooth function of E, and be proportional to the energy range AE.
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We shall denote this function by 2(E) AE for large systems composed
of many particles, and by C(B) AE for simple (constituent) systems.

Actually this crowding together of states occurs even for the higher
quantum numbers of some simple systems. For instance, the energy
levels of a point particle in a cubic space of volume V are, according
to (17),

(2. 17) E= V2’3 € + K+ k) = Vz/a K2,

where k;, k,, k, have to be integral, positive numbers. We can imagine

these three numbers to be the components of a vector K of magnitude

k. For a large vector, large compared to 1, the condition that its three

components be integers is less stringent than for a small vector, so that

the levels become more degen-

15 erate and closer together as
the energy increases.

To calculate the number C(E)
for this system it is easiest to
imagine the end points of the
vector k plotted in a three-
dimensional k space. A cross
section through this space, that
is, a two-dimensional k space,
is shown in Fig. 2. 1. All the
puints corresponding to quan-
tum states lie in the eighth
part of the space for which all
three components are positive,
and there form a simple cubic
Fia. 2. 1. Diagram of a two-dimensional k lattice. Since in this part of

space. the k space a cube of unit

volume contains exactly one

lattice point, the number of lattice points in a certain region will be

given by the volume of that region, provided that the region is chosen

large enough so that small discrepancies at the borders have no notice-

able effect. The number of lattice points whose distance from the

origin lies between k and k + Ak is equal to one-eighth of the volume of
the spherical shell of radius k and thickness Ak, namely,
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By expressing k in terms of the energy with the help of (17) one obtains
the desired number as

2. 34) C(E) AE = 4 1';;:—’ (2mE)V2 AE.

With many degrees of freedom obviously the effect will be much
more pronounced, that is, the number of states in an energy region AE
will be much larger and can always be represented very accurately by
a smooth function, Q(E)AE. Under such circumstances we will lose
interest in knowing the exact quantum state of the system. In fact,
this statement becomes meaningless; namely, if a very small perturba-
tion acts on the system, this perturbation will induce the system to
make discontinuous transitions from one state to another with prac-
tically the same energy. These perturbations are always present.
They may come from the outside or, more often, from effects inside the
system that have been neglected in the mathematical idealization. In
this latter case the law of conservation of energy must hold. For
example, an atom in a certain excited quantum state can radiate spon-
taneously, but the energy it loses will be found in space as light. Or,
if we consider a large system, made up of independent small systems,
for instance point particles, there will certainly, in reality, exist inter-
actions among the particles, at least in the form of elastic collisions, in
which classically, as well as quantum mechanically, energy and momen-
tum are conserved, although the state of the total system is changed.

Actually, the energy of a state is sharply defined only if the state is a true
stationary state, that is, if the system remains in it for an infinite time. If,
however, perturbations are acting, such that the system makes a transition in
a time A, the energy can be determined only within a range AE such that

(2. 35) AE-At 2 h.

This uncertainty relation between time and energy is quite analogous to that
existing between coordinate and conjugate momentum (11). An example of
this is the natural width of a spectral line, Av. The width of energy, Ahv, is
connected with the lifetime of the (upper) state by equation (35).

Therefore, in a large system, on account of the fact that the energy levels
are not sharp, owing to inner perturbations, transitions will be possible not
only between states of exactly the same energy, but also between states of
approximately the same energy. This is no violation of the law of conservation
of energy, since it means only that the energy values calculated are not the
true ones, and the quantum states not the true stationary states, which would
be found if all perturbations were taken into account.

Obviously, if At were very short, AE, therefore, very large, the assumed
energy states would become very bad approximations to the true ones, and the
calculations would no longer represent the true state of affairs.
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It would, in principle, be conceivable to take all these inner perturbations
into account in a perfect calculation of the true stationary states. If then the
system were to remain completely isolated for infinite time it would stay in one
state of sharp energy. Every observation or experiment performed on the
system, however, induces transitions, and the energy of the complete system
cannot be determined more accurately than relation (35) allows if At is the
time elapsing between observations.

The energy of any system has a natural uncertainty 3E, determined
by the extent to which the system is influenced by its surroundings.
This means that a defihite number @ = Q(F) §E of quantum states are
available to a system, even if its energy is determined as accurately as
possible.

The rate at which the transitions between these Q states take place
depends on the strength of the perturbation; it will not interest us in
the calculation of equilibrium phenomena. However, transitions: are
governed by some general laws which are very important for the founda-
tion of statistical mechanics. If the system is originally in the state r
let us denote the probability of finding it after a time d¢ in the state s
by wy, dt; similarly, the probability of finding the system in the state
r after it was known to be in the state s will be denoted by w,, df. 1t
follows from the general laws of quantum mechanics that

(2. 36) Weg = Wy,

that is, the probability of a process and that of the inverse one are
equal. This theorem, known as the principle of detailed balancing, is
a direct and strict mathematical consequence of the theory of pertur-
bations.

It is conceivable that a system, starting in a state r, can never go,
directly or indirectly, that is even by detours over other states, into a
certain group of quantum states of the same energy. In that case the
system will be called non-ergodic. In the future we shall always make
the assumption that all our systems are ergodic, that is, that every
quantum state of the system can be reached, directly or indirectly,
from every other state.

For ergodic systems the following fundamental law can be proved:
if the system starts in a state r, it will in time pass over into every one
of the states of approximately the same energy, and will on the average
spend equally long times in each. This means that if the energy of the
system is determined, within a range AE, the probability of finding the
system in a certain state, compatible with that energy, is the same for
each state. This ‘“law of equal probability of single states ” is the
basis of statistical mechanics.
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This theorem implies that every time average over the behavior of
the system can be replaced by the average over the different states.
If, for instance, the energy of the system is fixed within a range AE,
and if we want to know the average value of any quantity which is a
function of the momenta and coordinates A (p,g), we can obtain it by
summing the average value of A for each quantum state over all states
compatible with the energy, and dividing by the number of states.

A level which is g-fold degenerate, that is, which consists of g states,
is g times as probable as a single one; one says that the level has the
statistical weight g.

A proof of the theorem of equal probability of single states can be obtained
in the following manner. Assume that we have very many identical, inde-
pendent, large systems. We shall have to consider this case frequently later,
and we shall call it an * ensemble ” of systems. In the ensemble the large
systems play the same role as the subsystems (molecules) play in the gas.

Let 1, s, etc., denote quantum states of the large system compatible with a
definite energy, E, which shall be the same for all the systems of the ensemble.
At a given time, a certain number, Ny, of all the systems will be in the state
r, N, in the state s, etc. We wish to prove that in equilibrium Ny = N, that
is, that the number of systems in all states is equal. Since the average over
the numerous systems of the ensemble must be the same as the time average
over one system, we will have obtained the desired proof.

The number of systems in the state r decreases on account of transitions
from this to other states, and increases because systems in other states go over
into the state z. The total change of N; is given by

ﬂr = ‘Nrg‘wu + ;lel"
or, using the principles of detailed balancing, wys = wsr, (36),
(2. 37) N, = ;wu(N. - Ny).

In equilibrium the change with time of all the N’s, and therefore the left-hand
side of these equations, must be zero. The relation N, — N; equals zero, for
all values of s and 1, is obviously a sufficient condition for this. We have as
many homogeneous linear equations in the unknowns Ny as there are states,
and therefore unknowns. These equations, however, are not independent
since the total number of systems, XNy, is fixed: The determinant of the coef-

r
ficients of the N’s is equal to sero. However, if the determinant of the coef-
ficients of (N, — N;), that is, of the wy, differs from zero, the only possible
solution of (37) is that all the N’s are equal.
This can also be shown in the manner of Jordan.* We will assume that not all

. 9;: Jordan, Statistische Mechanik auf quantentheoretischer Grundlage, Braunschweig,
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the N’s are equal and show that this leads to a contradiction. The N's can be
ordered according to their size, so that Ny = Np 2 Ny & ---. The first [ of
the N’s may be equal. At least one of these ! states, r, must have a transition
probability different from zero to a state s for which Ny, < N, since otherwise
the system would not be ergodic. The equation for the change of the number
of systems in this state is

I.vx = }: Wa(Ng — N3).
82141

Every term in this sum is negative, and one at least is not zero; therefore,
certainly, Ny is less than zero, in contradiction to the assumption of a stationary
distribution.

The ergodic hypothesis is essential for this proof. If we had two groups of
quantum states denoted by r, s and p, o, respectively, such that no state of one
group can ever be attained from any state of the other one, w;, = 0 for all r and
p, the determinant of the w’s is zero. We have the additional relation that
the number of systems in each group remains constant, and we can conclude
only that in a stationary state the number of systems in every one of the quan-
tum states of the first group are the same, Ny = Ny, and also those in the sec-
ond one, Ny = N,, but N, — N, the difference of number of systems in a state
of the first and a state of the second group, can have any desired value.

2j. Liouville Theorem and Equal Probability in Phase Space

In classical mechanics the state of a system is defined by the values
of all the coordinates and momenta, that is, by a point in phase space.
The quantity analogous to the number of states whose energy lies in a
region AE is here the volume of phase space for which the energy lies
between E and E + AE, that is, the volume of the space between the
two energy surfaces E and E + AE. As mentioned before, this volume
has the physical dimensions of energy multiplied by time to the power f.
Since it is more desirable to use a dimensionless quantity, one divides
the volume by a constant of the same dimensions. A number which
has correct dimensions is #’. For small values of AE, the volume,
measured in units of h/, becomes proportional to AE, and we shall
denote it by W (E) AE:

(2. 38) W(E) AE = (1/k’) times volume of phase space for which the
energy lies between E and E + AE.

This definition of W(E) corresponds to the quantum mechanical
definition of Q(E), given in section 2i, since the quantum states are
packed into the phase space in such a way that to each state there
corresponds the volume A/,

It must be borne in mind, however, that the classical function W (E)
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is truly continuous, whereas the number of quantum states of an energy
region can only be approximated by a smooth function 2(E). There-
fore, if the states of the system are not close together (as, for instance,
in an oscillator), quantum-mechanical and classical calculations will
differ. An additional essential discrepancy between classical and
quantum-mechanical W(E) and Q(E) occurs, however, in the case of
identical particles, treated in section 2k.

The fundamental property which distinguishes the phase space, the
space of the momenta and coordinates, from all other conceivable
spaces in which the motion of the system could also be represented, is
the conservation of volume of phase space during the motion, expressed
in the Liouville theorem. Each point in phase space defines a state of
the system which determines its future unambiguously; in time the
system, and therefore the point representing it, move along a com-
pletely determined orbit. All points originally in a region a of volume
W, In phase space, will have moved in the time ¢ into a region b of vol-
ume Wp.* The Liouville theorem states that W, = W,

As an example we may consider a point of mass m with one degree
of freedom only, moving under the influence of a constant force F.
The solutions of the equations of motion are

mE=p= Ft 4+ i”
- (@) B
2m m

where p and z are two integration constants, the initial values of p and
z. Elimination of ¢ out of these equations gives p as a function of z,
that is, the path in phase space going through the point $,2. These
paths are parabolas having the z axis as major axis. This result would
have been obtained more quickly by the consideration that the possible
paths of a one-dimensional system coincide with the lines of constant
energy, in this case (p?/2m) — Fz = E.

Let us now consider all points p, z, within a region of phase space,
for instance, within the rectangle a S p < @ + A, 8 < z < B + AB,

with volume W, = Aa- AS. After the time ¢, these points have gone
over into the region determined by

Ft+aSpSFt+a+Aa,

2 2
”+ tB<z sf‘—+ + 6+ A8,

* Provided that the orbit is a continuous function of the initial conditions.
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or, changing the latter inequality by introducing p instead of p,

pt_ P pt_Fg
B e sssBE_—igias

This means that the points p, z all lie in a parallelogram the edges of
which are given by the four lines
p=Ft+a, p=Ft+ a+ Ae,

Fé 1 Fe i
z=——§;l+;'n1)+ﬂ, I=—‘27n+;p+/3+Aﬁ.

This parallelogram, see Fig. 2. 2, has the base AB, height Ax; the sides
are inclined against the base at an angle 5 with tan 5 = m/t. The area

Positions
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b 2

Positions
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5 10 15

FiG. 2. 2. Motion of point particles under the action of a constant force. Parabolas
represent paths in phase space.

of the region is independent of 8, namely, Aax - A8, identical with that
of the original region.

The theorem of conservation of volume in phase space may be mathemati-
cally expressed in the following way. The volume of a certain region is given by

Wt"f"‘fdﬁl"'df’ldﬁl"'dah

a 2f-fold integral. After a time ¢, systems whose states correspond to the
points on the boundary of the region have gone over into other points, also
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enclosing a region. The integral over the region of space with these new
boundaries may be denoted by

woy= [ [dpi-dprdas--ds.

We wish to prove that dW/dt = 0. This can be done by the method of Gibbs.
The region may be assumed to be small and bounded by planes of constant
values of the coordinates and momenta. Let us consider first the change of
volume due to the motion of two of the boundaries, say those bounding
71 by pu < p1 £ pu. In the small time interval d! a point of the upper
boundary will have moved by the amount py. df, increasing the volume if
P1u is positive, a point of the lower one by the amount 7y; df, decreasing the
volume for positive pi;. The total change due to the motion of both boundaries
is the difference between these two effects and therefore depends essentially on
the difference between 1, and py. We can replace this difference by

P
“61'11/31)1 dp,, and we find that the change of volume due to the motion
P
of these two boundaries is

2
f“'fbﬂdpl"'dpldqr”dq!dt-
14}

Obviously, the change due to the motion of the other arguments, whether p's
or ¢’s, can be obtained in exactly the same manner, so that the total change of
W in the time interval dt is

(2. 39) f f (an __!) dp,---dpsdgy - - - dgydt.
.-1 apy g

Changes of volume due to the effects at the edges of the rectangular region
contain a higher power of the small quantity df. From the equations of motion
in the Hamilton form, (10), it follows immediately that each term under the
integral is zero, since we have that

By B0y FH | O

= 0.
apy  9gy dpydq, 9gq, 3Dy

The integral is therefore zero, and we find that

aw
= 0.
dt

The Liouville theorem is essential for the complete understanding
of the uncertainty principle discussed in section 2e. If at one time the
coordinate of a particle is known within an accuracy Ag, the momentum
within a range Ap, in agreement with the uncertainty principle, the
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predictions that can be made for the future are neither more nor less
accurate than the initial uncertainty, namely,

. h
Ap- Ag = Ap - A§ 2o

We may also state the Liouville theorem in the following equivalent
manner: if we have several, say N, identical systems, and if at a time ¢
their states fill a part of the phase space with a certain density, they
will, after a time £, have moved to a different part of phase space corre-
sponding to the same energy, which they fill with the same density.

To proceed, we have to make here, as in the quantum-mechanical
case, the ergodic hypothesis that, starting from any given volume ele-
ment of phase space, every other region of phase space of the same
energy is eventually reached by the system. Under this assumption
the stationary distribution of N systems in phase space will be that of
equal density. If this distribution is once obtained, it will not change
in time, and it is also the only distribution which has this property if
the systems are ergodic.

Returning to one system, this implies that the state of the system
remains equally long in equal volumes of phase space, since otherwise
there would occur an accumulation of systems in regions where the
systems dwell longer. The probability of finding the system in a region
is proportional to the volume of that region, or equal volume elements of
phase space are equally probable. The time average over the motion of
the system can therefore be replaced by the average over the volume of
phase space.

This is the classical equivalent to the quantum-mechanical theorem
of equal probability of single states. The great analogy between these
two theorems is obvious: since the quantum states lie with constant
density throughout the phase space, the quantum-mechanical theorem
also gives equal volumes of phase space the same statistical weight.
The regions in phase space which will concern us most are those between
two neighboring energy surfaces, namely, the W(E) AE of equation
(38) or its quantum-mechanical equivalent, the number of states with
energy between the same values, 2(E) AE. These two quantities are
essentially equal (except in the case of identical particles) if the energy
range AE is sufficiently large so that AE/f, the range per degree of free-
dom, is large compared to two neighboring quantum states differing
only by unity in the value of any one quantum number.

Whereas the assumption that the system is ergodic is, to say the least,
somewhat artificial in classical mechanics, it is more natural and more
real for a quantum-mechanical system. It can actually be demon-
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strated that a classical system cannot be truly ergodic. In view of this
it is necessary to define quasi-ergodic behavior in a somewhat more
complicated manner than here, and to assume that all classical systems
follow this behavior, in order to deduce the laws of classical statistics.
A quantum-mechanical system, however, can be truly ergodic, since
only a finite number, Q, of cells is available to it at one energy.

Of course, the classical theorem was known long before quantum
mechanics. In fact, the agreement between the two methods is not at
all accidental, since quantum mechanics was created with the importance
of phase space and the statistical considerations as guiding principles.
Quantum mechanics has the essentially statistical characteristic of pre-
dicting probabilities rather than certainties. For this reason it seems
particularly adapted to be the foundation of statistical mechanics, and
the law of equal probability of single states is a more direct consequence
of quantum mechanics than the equal probability of phase space is of
classical mechanics.

2k. Identical Particles, Einstein-Bose and Fermi-Dirac Systems

Let us assume the system to consist of two or more identical inde-
pendent constituent systems, which we shall for convenience call par-
ticles, and let the states of the individual particles, which will be called
cells, since they may be regarded as forming cells in the up-space, be
denoted by the quantum numbers k. An example for this is provided
by several point particles moving in the same field-free space. It
appears at first sight that now a new degeneracy occurs since the state
in which particle 1 has quantum numbers k;, particle 2 quantum num-
bers kg, has exactly the same energy as the one where the particles are
exchanged, that is, where 1 has quantum numbers k2, 2 has k;. For
truly identical particles, however, these two possibilities have to be
counted as one only, and for more identical particles correspondingly:
all states of the total system which can be made up out of each other
by permuting the particles within the cells have to be counted as one
only. This means that a state of the total system is fully determined
by giving the number of particles in each single-particle quantum cell,
k, instead of the cell in which each particle is. For this it is necessary
that the particles be not only alike, but absolutely identical, so that
there is no conceivable experimental way of distinguishing among them,
and, therefore, among the different states that are counted as one.

The reasons for this are intimately connected with the fact that linear com-
binations of eigenfunctions belonging to the same degenerate energy level
describe the state just as well as the original functions. Instead of the eigen-
functions which definitely denote which particle is in which cell, namely, the
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products of eigenfunctions of the independent particles, we can form linear
combinutions of products of this type, namely, of all those that originate
from one product by permutation of the particles. For two particles, the two
products are ¥, (1) - ¥4,(2), and Yu,(1) - ¥, (2). The linear combinations,
which no longer have as simple a meaning as the products, are also possible
¥ functions of the same energy value. Outstanding among these are the
* symmetric ” and the ‘ antisymmetric,” namely, one that remains unchanged,
and one that changes sign upon the exchange of any two particles. For
two particles, these are ¥, = 27V%yy (1) « ¥4, (2) + ¥, (1) * ¥, (2)], and
Vo = 27Yp (1) - Y, (2) — YA, (1) * ¥i,(2)]. Since all outer influences and all
inner interactions act absolutely symmetrically on all identical particles, a
linear combination will keep its symmetry character under all perturbations.
A symmetric function remains symmetric, an antisymmetric one antisym-
metric, forever. In other words, the probability of transition of the system
from a symmetrical state s, that is, a state with a symmetrical eigenfunetion,*
to any other state, r, is zero, unless the end state, 1, is also a symmetrical'state.
The corresponding statement holds true for antisymmetric states. Therefore
the symmetric states alone form one ergodic system, as do also the antisym-
metric ones. All identical particles of one kind, for instance all electrons, will
at one time have been in either & symmetric or an antisymmetric state, and
therefore will always remain in states of the same symmetry character. We
then have to exclude all other mathematically possible eigenfunctions in count-
ing the number of states available to the system.

Obviously, the law of the occurrence of symmetric and antisymmetric states
is valid not only if the particles are independent, but also if there is any kind of
interaction between them. In that case, the quantum mechanically calculated
eigenfunctions of non-degenerate levels automatically have some symmetry
character, and only those which are either symmetric or antisymmetric in all
particles are realized in nature. The transition probability from the naturally
occurring to those of the wrong symmetry character are always zero, so that the

* In general, the symmetric function is constructed by adding all n ! eigenfunctions
obtained from the original product by a permutation of the n particles and dividing
by the proper normalization factor, (n 1)/2, The antisymmetric one is formed by
multiplying each eigenfunction by (—1)* before adding, where a is odd or even
according to whether the permutation of particles in question consists of an odd or an
even number of transpositions. This is the same as expressing the antisymmetric
eigenfunction as a determinant

%l(l) 'ﬁk;(z) e %](")
hg(l) %:(2) b h,(ﬂ)
‘I’. - (u I)—l/ﬂ

hn(l) V’kn(z) et 'l‘ku(")

Since a determinant is zero if two of its rows or columns are alike it is seen that ¥,
vanishes identically if two of the functions yx, are the same.
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fact that we have to rule out a certain number of states influences the others
in no way. We will encounter this phenomenon, for instance, in the rotation-
vibration levels of diatomic molecules composed of identical atoms, where
alternate rotational levels have different symmetry character, so that only half
of the states occur in nature.

The question whether for a given kind of particle the symmetric or antisym-
metric states are realized cannot, of course, be answered by theoretical con-
siderations; for this it is necessary to investigate the symmetry character of
the observed states. Now, the difference of possibilities, 1, symmetrical, and
2, antisymmetrical, is essentially this: it is always possible to construct exactly
one linear combination of the product eigenfunctions discussed above, which
is symmetrical in all particles. An antisymmetrical eigenfunction, however,
can be constructed only if no two of the single-system eigenfunctions are alike,
that is, if no two particles are in the same cell. Particles with antisymmetric
states, therefore, satisfly the Pauli exclusion principle, which postulates that
there is never more than one particle in a given single cell.

Investigations of atoms and nuclei have shown that all elementary material
particles, namely, electrons, protons, neutrons, and neutrinos, fulfill the exclu-
sion principle. The radiation of the black body (Chapter 16) shows that light
quanta have symmetrical eigenfunctions only. The behavior of composite
systems, that is, nuclei, atoms, and molecules, can be deduced from the laws for
the elementary ones. If the subsystems are composed of n elementary particles,
permutation of two subsystems amounts to n transpositions of elementary
particles and, therefore, since the permutation of each pair of elementary par-
tioles multiplies the eigenfunction by —1, must multiply it by (—1)". If nis
even, this means that the eigenfunction is unchanged upon the exchange of two

subsystems, or .t is symmetrical. If n is odd, the eigenfunction is antisym-
metric in the subsystems.

Systems composed of several independent truly identical subsystems
fall into two groups, depending on the nature of the subsystems:

1. Einstein-Bose systems (symmetrical eigenfunctions). The particles
or subsystems are indistinguishable. Eigenfunctions of the total sys-
tem which differ only in a permutation of the subsystems have to be
counted as giving rise to only one quantum state of the total system.
All configurations of the total system which differ only in being permu-
tations of the subsystems among the cells or quantum states of the sub-
systems have to be counted as one only. Therefore, a state of the
total system is determined if the number of subsystems in every cell or
quantum state of the subsystems is known.

Light quanta and all atoms and molecules composed of an even
number of elementary material particles form Einstein-Bose systems.

2. Fermi-Dirac systems (aniisymmelric eigenfunctions). A state of
the total system is defined if the number of subsystems in every cell or
quantum state is known, as under 1. In addition these systems obey
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the Pauli exclusion principle, which states that there is never more
than one subsystem in each cell.

Fermi-Dirac systems are formed by all elementary material par-
ticles,* that is, by positive and negative electrons, protons, neutrons,
and neutrinos, and furthermore by all subsystems composed of an odd
number of elementary particles.

With these two types of systems which are realized by atoms and
molecules we want to contrast a third which is not, namely the com-
posite system we would have obtained had we disregarded the prin-
cipal identity of the subsystems:

3. Boltzmann systems. A state of the total system is defined by the
quantum states of each constituent subsystem.

This latter method of counting the states of the system corresponds
to the classical one, since the volume in phase space, measured in units
of b/, between two energy surfaces E and E + AE is equal to the\num-
ber of states in the Boltzmann system. It is applicable only if all sub-
systems are different and distinguishable in principle, as for instance
billiard balls are, which could be painted in different colors. No
identical subsystems of molecular size form Boltzmann systems.

It is interesting to compare the number of states for the three types
of systems. If all N identical particles happen to be in different states
this gives rise to one state in the Fermi-Dirac or Einstein-Bose sys-
tems, but to N ! states in the Boltzmann system, since the N ! permu-
tations of particles in the cells are counted as different states.

If some cells contain several particles this still corresponds to exactly
one state of the Einstein-Bose.system, is never attained at all in the
Fermi system, and corresponds to somewhat less than N ! states in the
Boltzmann system, since a permutation of particles which are in the
same cell does not lead to a different state of the total system. If all
particles are in the same cell this means one state for the total Einstein-
Bose as well as the Boltzmann system.

Particles which form Einstein-Bose, Fermi-Dirac, or Boltzmann
systems would have differing numbers of states consistent with a given
energy, even if the cells or quantum states of the individual particle
had the same energy in all three cases. There would be more states in
the Einstein than in the Fermi system. The Boltzmann system would
have somewhat less than N | times as many ststes as the Einstein sys-
tem, and somewhat more than N ! times as many states as the Fermi
system.

The number of states of the Boltzmann system is always arbitrarily

* The heavy electron may possibly be an elementary particle obeying Einstein-
Bose statistics.
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divided by N !, and in the future it will be understood that this division
is made when Boltzmann systems are referred to. This division of the
phase space by the factorial of the number of identical particles occurring
had been undertaken in classical statistics long before the underlying
reasons had been explained by quantum mechanics. Gibbs, for
instance, found it consistent with the spirit of the statistical method to
count configurations that differed only in the exchange of the positions
of identical particles as being the same.

The number of states for this corrected Boltzmann counting lies
between the number for Einstein and that for Fermi counting. If
there are many individual quantum states which correspond to the
given energy region, and relatively few particles, very few of the total
number of states will have two or more particles in the same cell. The
numbers of quantum states with energy E, the numbers Q(E) of sec-
tion 2i, then become asymptotically equal for the three kinds of systems.
In general, however, the results of statistical calculations for the three
kinds of systems will be different. One obtains what is called Einstein-
Bose, Fermi-Dirac, or Boltzmann statistics, respectively. We should
like to point out that there is no difference in the statistical methods
employed. The difference lies exclusively in the mechanical model
treated, as discussed above.

The number of quantum states of a system calculated with the
Boltzmann counting that omits the division by N ! corresponds to the
volume of the classical phase space. For real systems, which obey
either Einstein-Bose or Fermi-Dirac counting rules, if N, identical par-
ticles of type 7 are present, the number of states available to the system
corresponds to, and under certain conditions becomes asymptotically
equal to, the phase volume W measured in units of K divided by the
product of the N; factorials, I‘IN ;1. If calculations are made using the

classical phase volume, instead of the number of quantum-mechanical
states, we shall always correct the Boltzmann counting by division
with the product of the factorials.

Systems of Einstein or Fermi type cannot be said to consist of strictly
independent particles. The quantum states of one particle are influ-
enced by the presence and behavior of the other particles. One should
say that the particles are mechanically, but not statistically, inde-
pendent. However, for the sake of simplicity, we shall continue to
speak of independent subsystems.



CHAPTER 3
TERMINOLOGY AND DEFINITIONS

(a) The States of a Thermodynamic System. (b) Forces of a Thermo-

dynamic System. (c) The Distribution of Independent Molecules in

Space. (d) The Concept of a Distribution. (e) The Most Probable Dis-
tribution. (f) Idealized Systems and Inhibitions. (g) Summary.

3a. The States of a Thermodynamic System

It has already been mentioned in section la that the method of
statistical mechanics is applied almost exclusively to systems whigh are
composed of a very large number of particles, and in which, moreover,
usually all the particles are alike or of a few different types. If there
are N; particles, usually molecules, of type i, each having f; degrees of
freedom, then f, = ;N,-f; is the number of degrees of freedom of the

total system. f, coordinates are necessary to specify the instantaneous
position of every part of the system, and f, momenta to specify the state
of motion. The phase space formed by the f, coordinates and their 1,
conjugate momenta is referred to as the y-space of the system.

As discussed in detail in Chapter 2, in classical mechanics one point
in this 2f,~-dimensional phase space completely determines the state of
the system, and therefore also its energy. There exists a continuous
range of points, in this y-space, consistent with a single total energy, and
we sometimes refer to such a range as an energy surface.

According to the laws of classical mechanics the specification of the
exact state of even a complicated isolated system exactly predetermines
the state of the system at any definite later time. For the systems
dealt with in statistical mechanics such information would be not only
impractically difficult to calculate, but valueless if obtained. Even
were & kindly disposed mathematical archangel to undertake the cal-
culation of the exact position and velocity of every helium atom in a
one-liter flask at standard conditions, for some definite future time, we
would be far too uninterested and lazy to even read the tediously long
information handed to us about every one of the 10%2 atoms.

The fact that all real systems obey the laws of quantum mechanics,
according to which the coordinates and momenta cannot be specified
exactly at the same time, does not alter this at all. The most exact

68



STATES OF A SYSTEM 69

location of the system in the y-space which retains physical significance
is the statement that the system is in one of a network of adjoining cells,
each of volume 2/Y. Each cell corresponds to a state of the system, and
is defined by f, guantum numbers. If the system is known to be in a
certain state at a definite time, the laws of quantum mechanics make
possible, in principle, the calculation of the probabilities of finding it
in any of the other states at any later time. But for a large system
this information is also much too detailed ever to interest us.

The total number of quantum numbers necessary to specify the
state of a system, f,, is completely determined by the specifications of
the system, and the volume in phase space occupied by a state, h/?, is
also fixed.* However, the exact choice of the meaning of the quantum
numbers is more or less arbitrary, in much the same way as the exact
choice of the f, coordinates in classical mechanics is not completely
predetermined by the description of the system. That is, the shape
of the cell in phase space of volume h/Y determined by the f, quantum
numbers is more or less arbitrary, and may be thought of as altered
to suit the needs of the investigator in attacking different problems.
However, just as the forces in the system frequently make the choice
of one particular set of coordinates almost imperative, so also the most
convenient set of quantum numbers for a particular problem is usually
pretty definitely determined.

If in future discussions we speak of the state of a system this may be
interpreted as meaning either the quantum-mechanical state, or the
classical poiut in phase space. In the secand case the expression ‘ num-
ber of states ” has to be read as “‘ volume in phase space.”’” This volume
is always assumed to be measured in units of 2/ and to be divided by the
product of the factorials of the numbers of identical particles occurring.
The general statistical laws can be built up equally well on either con-
cept. In fact, as the discussions in sections 2j and 2k suggest, for
many systems the numerical results will be the same with quantum or
with classical calculation.

Unfortunately, in thermodynamics the same word state is used in
a different sense. For this concept we shall always explicitly write
‘“ thermodynamic state.” The thermodynamic state of a system is
described by a very few observable quantities. The specification of
only two variables determines the thermodynamic state of a one-

* This does not mean that the possible values of p and ¢ for each quantum state
lie within a sharply bounded region of size /Y in the y-space; there exists a finite,
although small, probability that the system will be observed outside. For many,
n, adjoining quantum states, however, the volume of the range of reasonable prob-
ability for the p's and ¢'s approaches asymptotically nh’”.
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component system, a system consisting of only one kind of particles.
The two which have the most obvious mechanical significance are the
volume and the encrgy. All other observables, the pressure and tem-
perature, for instance, may be expressed as functions of these two.
Extremely many mechanical states of the system correspond, then, to
fixed values of these two quantities, and we know from section 2i that
an ergodic system reaches cach one of these states with equal probability.

It is our aim to obtain relationships between the experimental observ-
ables of a system, to be able to predict that a system of given com-
position, given volume, and total energy exerts a certain pressure on its
surroundings, and will have a certain temperature, entropy, and free
energy. The accomplishment of this falls naturally into two steps.
The first one is the identification of the thermodynamic properties with
mechanically defined quantities, and the derivation of the genetal laws
of thermodynamics. The second step, which reaches further than the
scope of pure thermodynamics, consists in the numerical evaluation of
the thermodynamic properties of a given system from a knowledge of
its mechanical nature. Such calculations shed light on the atomistic
interpretation of microscopic phenomena. For instance, in section 1d,
we have seen that the pressure exerted by a gas on the walls of its con-
tainer is due to the impacts of the molecules.

3b. Forces of a Thermodynamic System

If a completely defined system is in a fixed quantum state r the most
probable or expectation value of any property that is a function of the
coordinates and momenta A (p,q), can be calculated from mechanical
consideration. Let us designate this value by A,. However, it is
hopeless to undertake the determination of the exact quantum state for
a large system. If the total energy E and therefore the macroscopic or
thermodynamic state are determined, a large number of quantum
states, designated in section 2i by Q, are available to the system. We
know further from section 2i that all these states are reached with
equal probability by an ergodic system. It follows that the time average
of a property A of a macroscopic system is the same as the average
taken over all quantum states consistent with the energy, namely, the
sum of A, over all @ quantum states r, divided by €,

3. 1) A=Q01Y 4,
If x denotes an outer variable of the system, for instance, the volume

or one of the strain components defining the shape of a rigid solid, the
Quantity —9E,/dz is the generalized force with which the system in
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the quantum state r resists an infinitesimal decrease in z, or the force
which must be balanced from outside to prevent z from increasing.
The average value of the force is then

-a
3. 2) Fo=-at g 2%

In particular, if the outer variable z is chosen to be the volume V, the
force resisting a decrease of V is called the pressure, P, and we find

3.3 P=—-% =2,
@3 a5 av

Assume that a very small but finite change, Az, in the outer variable
z is undertaken so slowly that the change does not induce transitions.
(A process of that type is called adiabatic in quantum mechanics.) If
the system is in the state r the corresponding change of energy is given

by
oE,
(3. 4) AE, = ™

Az,

Now if the change is made even slower, so that the system makes many
quantum transitions during the process, as in any natural process, the
total energy change is again the average of the above quantity taken
over all quantum states available to the system.

11=8 1737 9E
’ qo— . ir
3. 4" AE = o X AE, = 5.5 22 A%

Obviously, to have any physical significance, the energy change AE
must be larger than the uncertainty 8E in the energy of the system.

We wish now to prove that in a process like this the number of quan-
tum states with energies below that of the system remains constant.
In other words, the number of states of the system, with outer variable
z, below the energy E, is equal to the number of states below E 4+ AE
if the outer variable has the value z + Az and AE is related to Az by
(4’). Expressed mathematically:

E E+4AE
@3. 5) fo Q(z,E) dE = j; Q(z + Az,E) dE.

The proof of this statement is almost self-evident. The change of
energy of the system, AE, is defined by (4’) as the average of the
changes of energy of the states near the topmost energy. This means
that, owing to the change in r, equally many states, previously located
below E, have passed to energies above E + AE as states from above
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E to energies below E + AE. This statement, in turn, is equivalent
to saying that after the process the number of states with energies
below E + AE is the same as the number of states which previously
had energies below E. Q.E.D.

For a mathematical proof the total change in S'Q(E) dE can be
split up into two additive parts. The first one is due to the change of
energy at constant value of z, and the second one to the change of z
at constant energy. The first constituent is obviously

r=0
Q(E)-dEAx = Q(E)l p a—E'Az
dz ﬂ;-l az

The second contribution is due to the fact that states at the boundary
E cross this boundary on account of the change in z. Since an increase
in energy of such a state takes it out of the energy region in question
and therefore decreases S'Q(E) dE by unity this leads to a change in
JQUE) dE by

oE,
—Ig e

summed over the states with energy E, = E. The number of these
is Q(E). Their average change of energy is the same as the average
energy change of the states available to the system at the energy E
(since the uncertainty of energy SE is assumed to be small compared
to AE). The second part of the change of S"Q(E) dE is then

15=249F,

_Q(L) ﬁrgl oz AI;

which precisely cancels the first. Equation (5) is thereby proved.

It follows from (5) that, if two energy values E; and E; of the total
system are altered to E{ and Ej, respectively, by the small and slow
variation of an outer variable, the number of states between E; and E;
is the same as that between E; and Ej.

Conversely, if a variation of an outer variable z leaves the number of
quantum states below the energy of the system unchanged, the changes
of E and = must be connected by (4). We can, therefore, using (2),
write (4) in the form

oE 15289,
3. 6) (—) ==Y —f = —F,;
( az f",,w, oK 0.5 oz z
0

the generalized force with which a system resists a decrease in z is the
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nega.twe of the derivative of the energy with respect to z at constant
f Q(E) dE. In particular, the pressure P is

®.7 B= -(ﬁ)j;’nm a8

From (1) it is seen that it is possible to predict only average values
of the properties of the system. Owing to the tremendously large
number of states these average values are the ones usually found by
experiment. Correspondingly, there is a significant difference between
the thermodynamic laws, which we wish to develop, and the laws of
other fields of physics, say those of mechanics. In these other fields
the predictions are made with complete certainty; all cases must be
expected to behave experimentally in exact agreement with the pre-
dictions of the calculations if no error has been made in the assump-
tions of the nature of the system. The thermodynamic laws, on the
other hand, are predictions only of the most probable happenings.
Fluctuations may and will occur, the magnitude and probability of
which may be calculated. That appreciable deviations from these laws
occur very seldom is due only to the very large number of particles,
which makes such deviations very improbable.

This difference between statistical mechanics and what is usually called
mechanics has been largely eliminated by the discovery that the classical
mechanics is only an asymptotic approximation to the more exact quantum
mechanics, the laws of which give merely the probabilities of certain happen-
ings. In view of this the predictions of classical mechanics must also be
regarded as giving only a result of enormous probability.

That the laws of thermodynamics merely predict occurrences of
enormously high probability can be seen clearly by considering the
example of the perfect gas treated in Chapter 1. The mechanical
system consists of N independent mass points moving in a given volume
V. If volume and energy of this one-component system are given, the
thermodynamic ‘state” is fixed. Thermodynamics, then, predicts
that the system will exert a upiform pressure on its surroundings,
determined completely by the energy and the volume.

If we examine the mechanical behavior of this system, it is imme-
diately obvious that, among the extremely many states consistent with
the given outer variables, volume and energy, there are many that give
rise to completely uneven pressure on the walls; for instance, it is
mechanically possible that the velocities of all molecules lie in the same,
say the z direction, giving rise to zero pressure on all but one wall!
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Moreover, we are assured by the Liouville theorem that there exists a
definite, non-zero, probability of the system’s reaching this region of
the phase space. However, it is quite evident that an occurrence of
this extreme nature will be extraordinarily rare; the region of phase
space corresponding to it is very small compared to the total region
consistent with the given energy.

In section 1d the well-known thermodynamic relation between the
pressure, volume, and energy was derived on the basis of two assump-
tions: that the velocities of the molecules were distributed evenly in all
directions, and that the molecules were distributed in space with con-
stant density. We are going to show that these ‘‘ distributions ”’ are
the most probable ones. Indeed, on account of the very great number
of molecules they are overwhelmingly probable, that is, the probability
of an appreciable deviation from these ¢ distributions,” and therefore
from uniform pressure and the relation (1. 13), is extremely small. To
demonstrate this we wish to investigate the second of these conditions
more closely.

3c. The Distribution of Independent Molecules in Space
We may consider the volume V of the perfect gas of section 1d as
being divided into M regions of equal volume. If the regions are num-
bered 1, ---, i, ---, M, and N; is the number of particles in the region
1, then the total number of particles is N = ZN.-. Obviously, if the
*

regions are too small, that is, if we have about as many volume elements
as particles, the numbers N; will vary erratically with time; regularity
can exist only if we postulate that M <« N. A distribution of the
molecules with respect to the volume regions is then defined by giving
the values of the numbers N,, the numbers of particles in each of the
regions. We have assumed intuitively in section 1d that the most
probable distribution is given by N; = N; = N/M, which means that,
if N is large, the number of particles n in any volume v > V/M is
n=uoN/V.

The extent to which we can be certain that the condition of equal
density in all parts of the system will actually be fulfilled in practice
may be estimated in the following manner. Let us, for simplicity, take
M = 2; that is, we divide the container of the N independent par-
ticles, in thought at least, into two equal volumes, @ and b. We shall
calculate the probability that at any randomly chosen time there would
be (N/2) + n particles in the part a and (N/2) — n particles in the b
part of the container. We have assumed that the particles are inde-
pendent, in other words, that no forces exist between them. We shall
proceed classically and assume that the molecules are statistically inde-
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pendent. The chance that any single specified particle would be found
in the a half of the container will be one-half, independent of the
positions of the others. The chance that it would be in the b part will
also be one-half. The chance of finding any single completely specified
configuration in which, for each previously numbered particle, the half
of the container in which it is to be found is specified, will be the product
of N one-halves or 27V, and independently of whether all the particles
are to be found in one half of the container of whether the division is to
be half and half. That is, the chance of finding N/2 4+ n specified
particles in a is independent of #n. This is in analogy to the fact that the
chance of picking up any one completely determined bridge hand is
just as small as the chance of finding a hand of thirteen spades.

However, our interest was not in the chance of finding (N/2) + n
specified particles in @, but in the chance of finding any (N/2) + n
particles in a. We must therefore multiply 2~ by the number of con-
figurations compatible with our distribution, that is, with the number
of ways in which N numbered particles can be separated into two
groups of (N/2) + n and (N/2) — n particles, respectively. This
number is* N 1/ ((N/2) + n) 1 (N/2) — n) L

The result for wy, the chance of finding (N/2) + n particles in part
a of the vessel, is

27NN
(3. 8) w, N

o) -]

Inspection of this expression shows immediately that it has its maxi-
mum value, wy, for n = 0, as we expected. Since expressions involving
factorials are somewhat awkward to handle one may bring equation
(8) into a different, approximate, form, which expresses its functional
dependence on n more conveniently. Use of the Stirling approximationt
for the factorial, namely, that M ! = MM (2xM)!/2, immediately
gives the maximum, wy, in the simple form

27N 2\'? 1
@9 (7> e (;) P
The ratio of w, to wy is seen to be, from (8),
w, (IN/211)?
@10 ™ @72+ n) 1 (N2 ) 1
N N-2  N-—|2n|+2
N+ |2n| N+ |2n| -2 N+2

* See Appendix A VII.
1 See Appendix A IV.
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which lies between the value of two simple expressions

@. 11) (___I_V__)"">_:?>(N —IJ2n|)|-|

N + | 2n I o
If we define z = | 2n |/N, then
1 )’mlm = z(N/2)
3. 12) (1+z >Eo>(l—z) .

For 2«1, when In (1 4+ )2z, and therefore (1 4 z)¥/?* =
NDzln+2) _ (NID2 poth ypper and lower limits become asymp-
totically equal to

(3. 13) 'i.";' —N[2)2

Using (13) and (9), an alternative approximate expression for“'w,.,
when N 1s very large and z is very small, is obtained as

1 2 1/2 -
\ (3, 14) Wy = _(1)1/2( ) e 12)28,
1.0

N

\ Since the integral of ¢ dz from
minus to plus infinity is #'/2, we see
that the sum, or integral, of all the
values of w, is unity.*

05 Equation (14) is known as the
\ Gauss error function, which is plot-

2. ted in Fig. 3. 1. If any act which
7k 9 may, with equal probability, have a

e
]
%

result @ or a result b is carried out
o S_' independently N times, w, gives the
®8 8510 18 20 probability that the result o will be
obtained (N/2) + n times. This

Fia. 3.1. applies as well to the throws of an

Plot of unweighted coin as to the problem

2 _a > 2 . with which we started, the distribu-
an¢ and f 272" % tion of independent particles between

, pendent particles betwee
against z two equal volumes.

* The approximation of (14) is valid only if z < 1. However, for large values of
N the value of w, becomes negligibly small even for very small values of z. The
integration, then, yields the same value if the limits are taken as z = — « and + =
orasz = 5 and —3 as long as N 3?/2 3 1, which may well be true for large enough
values of N even if § € 1.
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The quantity z = | 2n | /N is the fractional deviation of the number of
particles (N/2) + n in the part a from the most probable number N /2.
The number An of values of n included in an interval dzr = 2An/N is
An = 4N dz so that the chance of finding a distribution lying between z
and z 4 dz will be

1/2
(3. 15) wydz = -(;')L”?(%’) WIS g

and the chance of finding a distribution of fractional deviation from
the equilibrium greater than z in either direction will be

3. 16) w(>z) = waw,d:c = -G%m(%)lm‘l:we—wlz)adz )

Values of w(>2) for different values of N and z are tabulated in
Table 3. 1. It is seen that, for a liter of gas at standard conditions
(P = 1atm., T = 273.1°K. = 0.0°C.), for which N 2 10?2, the chance
of finding a deviation of more than one part in a million from the normal
in one-half of the flask is only one chance in 1071%",

TABLE 3.1
Values of w(>2) for different values of z and N.
w(>z) is the probability of obtaining a greater than z fractional deviation from

equality in the number of results from N independent performances of an act capable
of having two results of equal probability.

—_ g pw
w(>z)=f(\/% )"T/,f e dl.

VN/23

N z=10"1 1072 1072 1074 1075 10-¢
2 X 10° 0.157 0.887 0.989
2 X 104 10—44 0.157 0.887
2 X 108 10~ 4340 10744 0.157 0.887
2 % 108 1071 104340 1044 0.157 0.887
2 X 1010 1071 10~ 104340 1044 0.157 0.887
2 X 10% 10-10° 1071

The quantum-mechanical attack of the problem may be undertaken in two
ways. A division in the volume of the system may be introduced and there-
fore the quantization done in such a way that each quantum state of the sys-
tem corresponds to a definite distribution. Or one may use the quantum
states of section 2g, example 1, corresponding to the total volume, in which
case each state can give rise to any distribution. For each state the prob-
ability of finding certain molecules in certain regions of rpace can be calculated
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immediately owing to the physical significance of the eigenfunction ¥, namely,
by integration of | ¥ |2 over the regions in question.

If the molecules of the perfect gas were statistically as well as mechanically
independent, so that we could use the product eigenfunctions of section 2h, the
probability of finding a specified molecule in a part » of the total volume V is
v/V, just as in the above consideration. If, on the other hand, we have
Einstein-Bose statistics, and have to use symmetrical eigenfunctions, a certain
statistical attraction is present; for Fermi-Dirac statistics, a statistical repulsion.
The considerations which lead to the proof of the prevalence of equal density
remain essentially unaltered since the factor N I/([N/2] + »n) ! ((N/2] — n) !
arising from the number of ways in which, out of N particles, (N/2) + n can
be put into one box and (N/2) — n into another box enters here too, and its
dependence on n is strong enough to overshadow completely any other effect
that might be present. '

3d. The Concept of a Distribution .

As we have seen already in the last two sections, it is very often found
useful to introduce a description of the instantaneous configuration of
the system which is intermediate between the very detailed one of the
mechanical and the very broad one of the thermodynamic state. Such
descriptions shall be designated by the somewhat general term of
distribulion. Extremely many states correspond to one distribution,
but many distributions are consistent with the same energy. Or,
every point in phase space belongs to a certain distribution. The region
of phase space consistent with any distribution is large compared to
that of one state, but may be small compared to the total region of
given energy.

In Chapter 1, and in the two previous sections of this chapter, we have
used the term distribution and encountered two different types of dis-
tributions of molecules for the same system, the perfect gas: namely,
the distribution of molecular velocities over the different directions, and
the distribution of molecules in space. In the second, which was dis-
cussed more carefully, we saw that the concept was a useful one only if
the subdivision of space considered was large compared to the volume
per molecule. If this is so, one distribution corresponds to a much less
detailed description of the configuration than the location of each
molecule in space. This criterion of a distribution, that it be not too
detailed, is just what we wish to postulate generally.

Other distributions which we are going to consider are those of mole-
cules in different ranges of kinetic energy; or of energy between two
specified parts of the system} or, if we have atoms capable of forming
various types of molecules, the distribution of atoms between the dif-
ferent molecular species.
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On account of the varied types of distributions which are important,
a general definition of the word can hardly be given. All distributions
will, however, have this characteristic: a subdivision of the system, or
the phase space of the system, into different parts is undertaken in
thought, with the restriction that it be not too fine, so that the parts
are not of molecular dimensions. The subdivision may be of a type
that can easily be obtained experimentally, as the division of volume
into several parts, or a separation of the different molecular species. It
may just as well be such as to be realizable in thought only, that is,
impracticably difficult to obtain experimentally, as for instance a divi-
sion of the u-space, the phase space of the individual molecules, into
regions of different energy (section 5b). A distribution of a physical
quantity with respect to this subdivision is then characterized by a set
of numbers, D, one number of the set for each of the regions, giving the
value of the physical quantity for that region. If the subdivision is
one of volume, and the physical quantity is the number of molecules,
one distribution D is given by the numbers of molecules in each volume
region. A distribution of energy may be defined for the same sub-
division into volume parts by giving the energy contained in each
region.

The subdivision may be in the p-space, the individual regions con-
sisting of all those molecules with kinetic energies lying in certain
ranges, and the distribution detined by the numbers of molecules in
each kinetic energy range. This type of distribution is investigated
in the treatment of the monatomic perfect gas, sections 5b and 5e¢.

At any instant the system will be in some distribution D; in time its
configuration passes over into other distributions with respect to the
same subdivision.

Instead of the division of the system into many parts, one may
always consider the distribution between any one of the parts and the
rest of the system. Since the division is then into two parts only, a
distribution is given by one number D. We may, therefore, without
loss of generality, treat D like a single number.

The number of quantum states which give rise to a distribution D
shall be designated by 2,. The sum of Q, over all distributions is
equal to the value of Q for the system,

(3. 17) %90 =

It is then immediately possible to calculate the probability of finding
the system in a certain distribution D with respect to a fixed subdivi-
gon. Namely, since the probabilities of all single states are equal, the
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probability of a distribution D is the ratio of the number of quantum
states consistent with D to the total number of quantum states, 2,/Q.
In classical language, the probability of a distribution is equal to the
ratio of the volume W, of all points of phase space for which the system
is in the considered distribution, divided by the phase volume W con-
sistent with the total energy, namely, W,/W. If the values of these
two expressions should not coincide the quantum-mechanical one has
to be used.

Obviously, every point in phase space corresponds to one distribution.
We have tacitly assumed that every quantum-mechanical state of the
whole system also belongs to one distribution only. If the distribution
is according to a subdivision into energy regions, this is usually the case.
For others it is always possible to quantize in such a way that each state
corresponds to exactly one distribution (see, for instance, the end'of
section 3c). “‘
8e. The Most Probable Distribution

Among all the different distributions with respect to a fixed sub-
division of the system we shall denote the most probable one by Dy.
This means that the number of quantum states consistent with D, is
larger than that of any other distribution, 2, > Q5. Obviously, a
distribution which differs extremely little from D, has practically the
same Q. If, for instance, the numbers D defining the distribution are
large integers, a difference of a few units in some of them will not change
Qp, considerably. On the other hand, such a neighboring distribution
is experimentally indistinguishable from the most probable one.

It may, and indeed it does usually, occur that one distribution is
overwhelmingly probable in the following sense: namely, that all dis-
tributions differing from the most probable one by a noticeable per-
centage in the number D have a very small probability of occurrence
compared to D, and its neighboring distributions, which are, for a]l
physical purposes, alike.

We found this to be so in the example of section 3d. If we consider
the distribution of N = 10%° particles between two equal volumes,
each distribution can be characterized by just one number, D, the
number of molecules in one half of the system. The most probable dis-
tribution is given by Dy = N/2. Distributions differing from Dy by a
few units have an Qj, whose fractional deviation from ©Qp, is only a few
parts in N. If we choose AD = 10%, the most extreme distributions
in this range differ only by about one part in 108 in density, the quantity
which would be measured experimentally. The probability of finding
deviations from equal numbers in each part by more than 10'2 is,
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according to equation (3. 16), only 10~'*, We find, therefore, that

D -nz.+w D=Do—aD D=N
Q, > Q Q,
Dmbr-an nz-o b+ D -D§}-AD o

or, remembering that the sum of @, over all distributions is @, the num-
ber of states consistent with the energy,

D =De4AD D mDy+AD
3. 18) > 92 > 9- ¥ .
D =Dy—AD D w=Dy-AD

In the general case we shall define by AD a range of distributions
which are, experimentally, indistinguishable from the most probable
one, If the inequality (18) holds, it expresses mathematically the
fact that the sum of probabilities of all distributions which are unde-
tectably different from the most probable one Dy is very much greater
than the sums of probabilities of all other distributions. In this case,
only, will the most probable distribution be referred to as the equi-
librium distribution. We may then with confidence assume that all
properties of the system are expressed by those of the most probable
distribution, and calculate the thermodynamic relations assuming
equilibrium.

In actual practice the amount of material with which a chemist deals
usually contains such an enormous number of molecules that it is rather
difficult to find a useful type of distribution problem for which condi-
tion (18) does not hold, and in general we shall assume (18) in all prac-
tical problems without proof.

3f. Idealized Systems and Inhibitions

Mathematical abstractions must always be made when the calcula-
tion of the properties of any physical object is undertaken, and the
more complicated the object, the more necessary this becomes. The
naturally occurring system is never treated in statistical mechanies,
but instead an idealized system with properties so chosen as to resemble,
as much as possible, those of the true one. The idealized system has
certain exact and sharply defined characteristics, which are nearly, but
frequently not exactly, realized in the natural counterpart. For
instance, in sections 1d and le, it was the aim to calculate the properties
of a dilute real gas, and, instead, the properties of an idealization of a
gas, a system composed of independent mass points, was investigated.
The condition of independence is certainly not strictly fulfilled in the
real gas, but actually the first approximation of the interaction between
molecules was taken into account by considering that transitions
between different quantum states occurred. The transitions between
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states are due to the collisions between molecules, which, in turn, can
be present only if interactions in some form or other are permitted. It
is these transitions which permit us to treat the system as ergodic, and
to assume the equal probability of states, or of equal phase volumes,
and which assure the attainment of equilibrium distributions.

For calculations of equilibrium phenomena, the rate at which transi-
tions take place is usually of no interest. In some natural systems,
however, it sometimes happens that transitions between some groups of
quantum states are very rare. All real systems are presumably ergodic
in the strict sense of the word, that is, they have a finite probability of
attaining every quantum state from every other one, but they may
need a very long time to go over from one group of states to another.
This time may be so long that such transitions simply do not accur
during the course of a physical experiment. The experimental behayior
will then not correspond to complete equilibrium, but to equilibrium
between the states within the group only. In other words, the system
bebaves as if it were non-ergodic.

Such groups of states, between which transitions are rare, always
correspond to very different physical pictures of the system, for instance,
to different distributions of atomis between different molecular species.

A drastic example is furnished by the nuclear reactions. Since all
nuclei are built of the same elementary particles, the material contained
in a flask of hydrogen could also appear in the form of other atoms and
molecules, and hydrogen is certainly not in equilibrium with respect to
these nuclear transmutations. Probably, in infinite time, the system
is truly ergodic, and transitions to all states consistent with the energy
and constitution would occur, but except at stellar temperatures the
transmutation of the so-called stable elements occurs rarely even if time
is measured in units of geologic periods. In investigating the properties
of any system composed of stable elements, it is more than obvious to
assume these transitions to be strictly inhibited, that is, to treat the
atomic composition of the physical object as given and unchanging.

In other cases, however, the difference in rate between the establish-
ment of equilibrium within a group of states, and between groups corre-
sponding to certain different distributions, is not so extreme but still is
sufficiently obvious to require special treatment. At room temper-
ature it takes years, in the absence of a catalyst, to establish equi-
librium with respect to the reaction between hydrogen and oxygen gases
to form water. Many experimental measurements, such as that of the
specific heat or the pressure, could easily be made on a system composed
of axygen, hydrogen, and water, under conditions where the mixture
was certainly not in equilibrium with respect to the possible chemical
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reaction. The introduction of a catalyst into the system, or a com-
paratively small change in the total energy, and therefore temperature,
would entirely alter the rate with respect to the chemical reaction.

The results of an experimental measurement of some property, say
the specific heat or the change of pressure with volume, on a chemical
system in which a fairly slow chemical reaction takes place, may depend
on the speed with which the measurement is made. If the system is
heated, or the volume changed, more rapidly than the chemical reaction
can establish equilibrium under the new conditions, the measured inflow
of heat, or change of pressure, will be different from what it will be if
the changes are made so slowly that complete equilibrium is established
during the change.

Corresponding to these two different experimental results, it will
sometimes be found desirable to make two different calculations of the
statistical behavior of one system, one calculation in which complete
equilibrium is assumed to be established with reference to some dis-
tribution, and one in which the system is assumed to be inhibited to
remain in one particular distribution.

Among the idealizations which will be assumed in the systems whose
properties are to be investigated, then, one of the most convenient will
be the idealization that the system is inhibited to remain in a certain dis-
tribution with respect to some subdivision. That is, we shall treat an
idealized system which is completely ergodic, and can reach all the
quantum states available to it, but which differs from the natural sys-
tem in that certain whole groups of quantum states which are reached
but slowly by the natural object are regarded as entirely non-existent
in the idealization.

These inhibitions may be used either to eliminate the necessity of
considering transitions never observed in the time at man’s disposal,
such as conceivable nuclear transmutations, or to enable us to calculate
the properties of a system not in equilibrium with respect to some
relatively slow chemical or physical change, or even to calculate the
properties of a system in some distribution, not that of equilibrium, with
respect to some subdivision in which equilibrium is established very
rapidly in the natural system.

By this subterfuge of the introduction of an inhibition upon the
idealized system we avoid the difficulty of explicitly considering non-
ergodic systems. Perhaps it is more correct to say that the necessity
of calculating the properties of pseudo non-ergodic systems, for which
we can say only that those quantum states which can be reached within
reasonable time are equally probable, forces us to treat idealized sys-
tems subject to certain inhibitions.
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There exists a tendency on the part of some workers to say that thermo-
dynamios can be applied only to systems in complete equilibrium. Strict
adherence to this condition would limit the applicability of thermodynamics
rather severely. Few organic compounds can ever be said to be stable in the
sense that they could exist pure if every conceivable reaction went at an appre-
ciable rate. In view of the existence of nuclear reactions we could even say
that this would exclude the application of thermodynamics to any ordinary
chemical system. The use of the concept of the completely inhibited idealized
system is a convenient artifice to overcome this difficulty. We calculate the
properties of an imaginary system which is in complete equilibrium with respect
to all its possible reactions. This idealized system is then said to correspond
to the real system having other conceivable reactions, with respect to which
the rate of attainment of equilibrium is almost infinitely slow compared to the
time interval during which its properties are investigated.

It is a hypothesis, however, which seems very natural and probable,
that all transitions between states that do not differ from each other in
some marked physical or chemical property, such as the percentage’ of
different molecular species, occur with sufficient probability so that the
system may be regarded as truly ergodic with respect to all of them.
However, it is to be noted that there have been in the past, and may
possibly occur in the future, some surprises with respect to this hypoth-
esis, For instance, there cxists in nature an inhibition making transi-
tions of hydrogen molecules between odd and even rotation states very
slow. Although this effect is actually very readily explained, it would
have appeared most amazing before a fairly complete understanding of
quantum mechanics existed.

The possibility of imposing and lifting inhibitions in an idealized
system offers us another convenience. All occurrences take place at
constant energy of the whole universe. We are, therefore, imposing
no limitation on the general type of processes that we consider if we
limit ourselves to processes at constant energy. All acts on a system,
starting or stopping a process, may then be idealized by regarding them
as the lifting or imposing of certain inhibitions at constant energy, since
the source or sink of energy can always be taken as part of the system.
The attainment of equilibrium with respect to any variable of a real
system from a definite condition of non-equilibrium can always be
described as due to the lifting of an inhibition.

For instance, the act of opening or shutting a stopcock between two
flasks containing gas may be considered as the lifting or imposing of an
inhibition against the flow of matter between two part volumes.
Similarly, two isolated systems may be treated as one system of two
parts with inhibitions against the flow of matter and energy between
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them. The physical act of bringing the two systems into thermal
contact would be described as the lifting of the latter inhibition, The
process of allowing the hydrogen, oxygen, and water molecules of the
earlier example to come into contact with a catalyst may also be

described as the lifting of the inhibition prohibiting the chemical
reaction,

3g. Summary

The state of a system, the most complete description of its instan-
taneous condition which it is possible to make, is defined, if the system
is assumed to obey classical mechanics, by giving the values of f, coor-
dinates and f, momenta, and if the system obeys quantum mechanics,
by giving the f, quantum numbers necessary to define a cell of volume
k" in the y-space.

A system in a certain distribution with respect to the value or values
of some physical variable may be in any of a large number of states con-
sistent with that distribution D. The number of states corresponding
to D is called 2y, and since all states have the same a priors probability,
the probability of a distribution is proportional to Q. For macroscopic
chemical systems and distributions with respect to the type of sub-
divisions in which one is interested, the sum of the probabilities of all
those distributions which do not differ significantly from the most prob-
able one add up to a value of practically unity. In this case the most
probable distribution is referred to as the equilibrium distribution.

Idealized systems of sharply defined characteristics are more con-
venient as chjects of calculation than the real systems which they are
intended to simulate. Such idealized systems may frequently be
assumed to be subjected to certain inhibitions preventing the change of
the distribution of the system with respect to some physical quantity,
if this change in the real system takes place more slowly than the time
necessary to measure the experimental quantities calculated. The
lifting of such an inhibition corresponds to the starting of a spontaneous
reaction in the real system.



CHAPTER 4

THE DERIVATION OF THE LAWS OF THERMODYNAMICS

(a) Introduction. (b) Characteristics of the Logarithm of Q. (c) The

Quantity S = kInQ. (d) Identification of Entropy, Temperature, and

Pressure. (e) The Limits of Validity of the Second Law of Thermo-

dynamics. (f) The Relation between Entropy and the Uncertainty in the

Energy. (g) The Third Law of Thermodynamics. (h) The Conditions
of Equilibrium and the Chemical Potential x.

{
4a. Introduction |

In this chapter a quantity S will be defined as kIn Q, in wluch k is
the Boltzmann constant, and ©, defined in sections 2i and 3b, is the total
number of quantum states available to the system. It will be shown
that S, for a sum of two independent systems, is the sum of their two
S values, and that S is an extensive property. It will also be shown
that S increases for all spontaneous changes occurring in a system at
constant energy. These are also the fundamental characteristics of
the thermodynamic entropy. '

Two quantities, 7 and , of the dimensions of temperature and pres-
sure, respectively, will be defined as 1/7 = (3S/9E)y and =/r =
(08/0V)g. It will be shown that r is a monotonous function of the
temperature alone, the same function for all systems, and = a monotonous
function of pressure, the same for all systems of the same 7 value. In
section 4d it will be demonstrated that = is the pressure in all systems.
It will similarly be shown that 7 is proportional to the thermodynamic
temperature, and that 7 dS is equal to the heat absorbed.

The first law of thermodynamics is an immediate consequence of the
laws of mechanics as soon as heat is identified with the kinetic and
potential energy of the molecules and atoms composing matter. The
characteristics of S, discussed in the first paragraph, combined with its
identification as entropy, then prove the second law of thermodynamics
as a consequence of the laws of mechanics.

The number of quantum states available to a system, Q, has a definite
value, 80 that S = kIn Q has no undetermined integration constant,
except the proportionality factor k, which is connected with the arbi-
trarily chosen scale of temperature. This is equivalent to the third
law of thermodynamics, which, in its most general, and possibly only

86
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correct, form, states that the entropy of a system has a definite natural
value in which the integration constant present in the classical definition
is naturally determined in such a way that S is not large at the abso-
lute zero of temperature.

4b. Characteristics of the Logarithm of O

The number §! is an extremely large number for a macroscopic sys-
tem, so large that even its logarithm, In , is of the order of magnitude
of N, the number of molecules of the system. In section 2i we have
defined @ = Q(E) 6E as the number of quantum states available to the
system, in which the natural uncertainty of energy is $E. Since this
uncertainty 8E of energy is somewhat vaguely defined, the value of Q,
which is proportional to 3E, is also but vaguely determined. However,
because of the enormous magnitude of @ an uncertainty of many fold
in the value of Q itself still permits the value of In @ to be determined
within a completely negligible error. Indeed, In Q is so large that it
makes no numerical difference in its value whether Q is calculated as the

B
total number of quantum states below the energy E, @ = f Q(E) dE,
0

or as the number of quantum states belonging to some narrow energy
range at the energy E, @ = Q(E) $E. This will be discussed in greater
detail in section 4f. For the present we shall retain the definition of ©
given in section 2i, that it is the number of quantum states available
to a system, the energy of which is E, within some definite range of
uncertainty SE.

The logarithm of Q is a perfectly defined number of considerable
importance in determining the properties of the system.

The first characteristic of In @ which we wish to emphasize is that of
being additive for independent systems. If there is a system a with
number of quantum states @, and an independent distinguishable sys-
tem b with Q,, the value of the number of quantum states, 9,3, for a

system consisting of the sum of the two independent parts a and b
will be

4.1 Doty = Qo By

This is self-evident from a consideration of the way in which quantum
states for the system consisting of the two parts a and b are counted.
The quantum state of the combined system is defined by giving the
quantum numbers of the part a and the part b (section 2h), provided
that the two subsystems a and b are distinguishable from each other.
Each state of a can be combined with any of the states of b to form a
state of the total system. It follows that the number of possible states
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of the combined system is the product of the numbers of states of the
two parts.

From (1) we find that the value of In @ is additive for two inde-
pendent systems,

4. 2) In Q4 = InQ + In Q.

For n equal independent systems, In @ of the whole system is n times
the In © of one of the parts. We shall later show that if the n systems
are united to form one, In © is unchanged, and is therefore an extensive
property, namely, proportional to the size of the system.

In section 3d we defined the quantity Q5 as the number of quantum
states available to the system if it were restricted to a particular dis-
tribution D with respect to some subdivision. The probability of the
distribution was seen to be proportional to the value of Q,, and ithe
equilibrium distribution Dy was defined as that for which & had a
maximum value, the most probable distribution. Furthermore, we
agreed not to use the word equilibrium unless the sum of the values of
Qp, for all the distributions differing by a negligible experimental amount
from Dy was very much larger than the sum of the @p’s for all other
distributions. This is equivalent to demanding that we define our dis-
tributions in such a way that their total number, M, is small compared
with the total number of quantum states, @, of the system. Since the
value of Qp,, the number of quantum states of the most probable dis-
tribution, must be greater than @/}, the total number of quantum
states of the system divided by the total number of distributions, and
Qp, must also, obviously, be less than @, it follows that we can write

4. 3) In2>InQ, >h@—InM.

Now we have assumed that

4. 4) In M «InQ,

and so we can write as a sufficient approximation that

4. 5) InQp, = In Q.

The logarithm of the number of quantum states of the most probable
distribution is numerically the same as the logarithm of the total num-
ber of quantum states of the system.

We may illustrate this by the calculation for a system which is not, in
the narrow sense, physical. The system consists of a pack of 2N cards,
N of which are red and N black. A single state of this system may be
defined by giving the color of the card in every position in the pack.
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One state will be that arrangement for which the first card is red, the
second black, the third black, the fourth red, ete. This definition of a
state is analogous to the physical one, since if the cards are not dis-
tinguishable other than by their color it gives the most complete descrip-
tion that can possibly be made of the condition of the pack. Each
state so defined vorresponds to (N !)? arrangements of distinguishable
cards. Honest shuffling of the cards will show each state to be equally
probable. The total number of states, Q, is,

(2N)!
(4. 6) Q= VR
since it is equal to the number of arrangements of distinguishable cards
divided by the number of arrangements per state (Appendix A VII).
By using the Stirling approximation (Appendix A IV) for the factorial,
we find

4.7 In@=2N1In2 — }n (xN).

Now, if a distribution is defined as the number of red cards, D, among
the first N cards of the deck, it is fairly obvious that the most probable
distribution will be given by the value Dy = 3N, in which case there
will be equal numbers of red and black cards in both halves of the deck.
The value of @, will be the product of the @’s for the two half-packs,
namely,

g, = NV
©[(N/2)
4. 8) InQp, = 2N In2 — In (3=N).
The difference,
(4. 9) InQ — InQp, = }1n (xN/4),

increases with N as the logarithm of N. The value of In @ increases
much more rapidly, indeed, linearly with N. In Table 4. 1 the values
of In©, (In Q@ — InQp,), and the fractional error, (In @ — In Qp,)/In @, are
tabulated for various values of N. It is seen that, if the number of
cards approaches that of the molecules in a chemical system, about 101
or greater, the percentage error introduced by substituting In Qp, for
In @, or vice versa, would be entirely negligible. This does not mean,
of course, that ©p, equals 2; the ratio of these two quantities is given
in the last column of the table and is seen from (9) to be (xN)'2,
We have previously stated that this ratio 2/Qp, must be smaller than
M, the total number of possible distributions, which in this case is
equal to &, the total number of places in the half-deck.
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Equation (5) which states that the logarithm of the number of quan-
tum states of the most probable distribution may be substituted for the
logarithm of the total number of quantum states of the system has a
great practical applicability. It is frequently far easier to evaluate
In ©p, numerically than In . In Chapter 5, in which In @ for a perfect
monatomic gas is sought, the method actually used is to evaluate In Qp,
for the equilibrium distribution of energy among the molecules.

TABLE 4. 1

The value of In @ and In 2, for a deck of 2N cards, N each of two colors, if a
distribution is defined by giving the number of red cards among the first N cards.
The most probable distribution is Dy = }N.

N Ing e -Ing, | B8N 2
Ing O,
10? 135.76 2.18 0.016 8.9
10° 1382.2 3.34 0.0024 28
104 1.3858 X 104 4.48 3.2 X 10™* 89
108 | 1.3863 X 10° 9.09 8.5%X10~® | 8.9 x10°
10 | 1.3863 X 10! 18.30 1.3X107% | 8.9 % 107
10% | 1.3863 X 10%¢ 27.51 2 X107 | 8.9 x 10t

Equation (5) has been derived at this place for another purpose,
however. If an inhibition that prohibits transitions between quantum
states belonging to different distributions is imposed upon a system,
the system will be * frozen ” into the distribution in which it happens
to be found. As we have seen, the probability is overwhelming that
this would be one which is experimentally indistinguishable from equi-
librium. Indeed we can neglect entirely the infinitesimal chance that
the system will be found in a distribution experimentally different from
equilibrium. After the inhibition has been imposed, the value of In ©
will be that of In @, for the distribution into which the system has been
frozen. Since this distribution must be one of the probable ones whose
value of In @), is large and approximately that of In @p, it follows that
the value of In € for the system will be only negligibly decreased by the
imposition of the inhibition. The imposition of an inhibition upqn a
large system does not decrease the value of In @ by an appreciable fractional
amount,.

The closing of a stopcock between two flagks of equal volume will, with
overwhelming probability, result in fixing practically equal numbers of mole-
cules in each flask. If the molecules were different and distinguishable, this
physical act would do much more than limit the system to this most probable
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distribution, for it would trap about 4N specified molecules in each of the two
part volumes. This would decrease @ by the factor (N) [2/N | = 2-¥, the
logarithm of which, —N In 2, is by no means negligible. The same holds for
every physical inhibition which affects the distribution of molecules.

Molecules of one species are, in truth, identical and indistinguishable. The
quantum states of rystems of many identical particles are of Einstein-Bose or
Fermi-Dirac type (section 2k), and do not specify the location or state of any
particular particle as distinguished from the others. With this method of
ocounting the states the difficulty mentioned above does not occur.

The problem was solved in classical (Boltzmann) statistics by division of
the phase space by N 1. This is necessary in order to show, as we shall do
immediately, that S = k In Q is an extensive property of the system.

As said in sections 2k and 3a we always use the phase space divided by II;N; !
as the classical analogy to the number of states.

If, however, we consider a system under the influence of an imposed
inhibition restricting it to a certain distribution D, and then lift the
inhibition, we see that one of two cases may prevail. Either the dis-
tribution D was one of those indistinguishable from the equilibrium
distribution, in which case no change will occur and the value of In @
will not be appreciably altered; or, if D were a distribution far from equi-
librium, one can expect the system to be in a more probable one after a
finite time interval, and In @ would be increased. Eventually, the
equilibrium distribution will be attained. The lifting of an inkibition
will esther cause no change in the system, or, if a change takes place, the
value of In @ unll be increased.

These properties are sufficient to prove that S is an extensive quan-
tity. The insertion of a material wall, preventing flow of matter and
energy between two parts of the system, is the type of inhibition dis-
cussed above. This process divides the system into two independent
parts. The value of S for the total system, after the insertion, is the
sum of the S values of the independent parts. Since this physical
inhibition does not change S, it follows that, also without any wall:
S is the sum of the values of S for any volume parts, and S is propor-
tional to the size of a homogeneous system, provided that the intensive
properties, such as density and energy per molecule, are kept constant.

We shall frequently refer to the value of In @ of a system in a certain
distribution D, which will be InQp. Experimentally, it would be
impossible to measure the properties of a system in a certain distribu-
tion unless we had some method of assuring ourselves that the distri-
bution would be maintained during the course of the experiment by
some hindrance or inhibition against the transition into other distri-
butions. For this reason, when we refer to the value of any property
of the system in a certain distribution D, such as the value of In Qp, we
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shall always assume implicitly the existence of an inhibition against
the transition of the system into quantum states corresponding to other
distributions.

All changes which can be brought about at constant energy in a sys-
tem without causing a change in the properties of some other system in the
universe may be described by the lifting or imposing of an inhibition upon
the system in question. This has been discussed in detail in section 3f.

We have shown that an operation on an isolated system, which does
not cause a change in some other system, cannot produce a measurable
decrease in the quantity In @, and that if this operation causes a change
in the original system In @ must increase.

4c. The Quantity S = kIn &

The dimensionless quantity In @ has the most important character-
istics of the thermodynamic entropy. It is an extensive property of all
systems and increases for any spontaneous change which the isolated
system undergoes at constant energy. The thermodynamic entropy is
so defined as to have the dimensions of energy divided by temperature.

We shall define a quantity S by the equation

4. 10) S=khe,

in which the constant k has the dimensions of energy per degree of
temperature so that the dimensions of S are those of entropy. We
shall now proceed to prove that the quantity S is proportional to the
thermodynamic entropy. The numerical value of k is at our disposal,
and in Chapter 5 we shall see that, if it is chosen to be the Boltzmann
constant of value k = 1.3804 X 107!® erg per degree Kelvin, S becomes
identical with the entropy.

In Q is the logarithm of the total number of quantum states available
to the system and will be a function of the total energy and of the vol-
ume, as well as being dependent on any inhibitions that may be pre-
sumed to exist.

The quantities r and = are defined by
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* We are employing here the usual nomenclature of thermodynamics (9/9z)y, s,
in which the subscripts indicate the variables kept constant during the partial dif-
ferentiation. This device is necessary since the thermodynamic quantities can be
expressed as functions of several different sets of variables, for instance, the entropy as
function of volume and energy, or of volume and temperature, etc. (see Appendix AI).
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8o that r has the dimensions of a temperature, and = those of energy
per volume, or pressure, force per area.

Consider any system of fixed total energy, E, consisting of two parts,
a and b, of energies E, and E}, between which energy can flow, but
which are otherwise entirely independent. We wish to examine the
equilibrium condition for the distribution of energy between the two
parts. If the symbol 8E, is used to indicate an infinitesimal variation
in the energy E, of part a, the condition of constancy of the total energy
requires that

4.13) E=E,+E,, 8E=0=3%E,+ 5E,; &E;= —3E,.

The value of Sp, for the complete system in a given distribution D,
determined by the value of E,, is the sum of the values of the part
systems,

4. 14) Sp = Sa + Sy,
S. being a function of E, and S, of E, Indicating, by 8Sp =

(dSp/dE,) 6E,, the infinitesimal change in Sp brought about by a
change 6E, in the energy of a, one obtains the equation

S AN as
.15 58 = (22)om, = (G¢) o8+ (53),
and, from (13) and (11),
@ 16) 48p _ (QS_") Sb) _1_ 1
dE, oE oK Te Tb

Equilibrium corresponds to a maximum of Sp, and therefore to
dSp/dE, = 0, which is satisfied by 7, = 75. Spontaneous change in
E, will take place only in such a way that S, increases, that is, that
38p is positive. From (16) it follows that if 1/7, > 1/m, or 74 < 7,
8E, must be positive, that is, the energy of part a of the system will
grow at the expense of the energy of part b.

We arrive at the conclusion that between any two systems energy
flows spontancously from the system of higher  value to that of lower
7 value, and the two systems will be in equilibrium if they have identical
values of 7. The qualitative definition of temperature is just this, that
energy will ow from a system of high temperature to one of low temper-
ature, and will cease to flow if their temperatures become identical.
The condition of equilibrium which we have just found, equal r values,
is also the condition of equal temperatures. Since any two systems
whatsoever that have the same T have also the same value of 7, it fol-
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lows that r is the same function of T, and only T, for all systems.
Furthermore, since high 7”s correspond to high 7’s, we know that ris a
monotonously increasing function of 7. In Chapter 5 we shall find
that the energy of a monatomic gas is 3R7/2 per mole, which identifies
r with the temperature in a perfect gas and therefore in all systems.
We shall now investigate equilibrium with respect to the distribution
of volume between two systems. Consider a system of fixed total
energy E, and volume V, consisting of two parts, a and b, with energies
and volumes E,, E;, V,, and V,. Energy will be assumed to flow
between a and b, and the volume of one system may grow at the expense
of the volume of the other, but otherwise the two part systems a and b
are independent, so that no matter may be transferred from a to b. We
shall study the value of Sp of the system as a function of V,, that is, as
a function of the distribution of volume between the two systems. .
As before, we have condition (13) of constant total energy, that
8E, = —3E}, and the additional condition of constant total volume,

4. 17) V=Voe+ WV, V=0 Vo= —8V

The two parts of the system will remain in equilibrium with respect to
the flow of energy between them, which, as we have just seen, assures
us that 74 = 7,. The change in Sp, Sp = (dSp/dV,)sV,, brought
about by an increase 5V, in the volume V, of part a, will be composed
of two parts, one due directly to the change in volume of the parts, and
the other due to the changes in energy (dE./dV,) 8V, necessary to
maintain equilibrium with respect to the distribution of energy,

- =[GR). - GR).]
(4. 18) &8p = av. Vs = v, v, 5V a
GSb) ]
dE,

+[Ge),

Using (11), and the condition that r, = 75, the coefficient of the latter
term is seen to be zero, and with (12) one obtains

dSp
dv,

(4. 19) 6SD = 6V¢ = % ('a - Tb) 6V¢-

If x4 = m, the system is in equilibrium. The spontaneous change, for
which 88p is positive, will take place with an increase in Vg if =g is
greater than m, and in the opposite direction if x, < .

Two such systems are in equilibrium only if their pressures are equal,

and so we see that any two systems of equal 7, and therefcre of equal
temperatures, have equal values of = if their pressures are equal. For
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all systems at the same temperature, r is the same monotonously
increasing function of pressure alone.

Therefore, if the identification of 7 with temperature and x with pres-
sure is undertaken for one system only, it can immediately be gener-
alized for all systems.

The simplest system for this purpose is the perfect gas, treated in
Chapter 5. We might therefore refer the reader at this stage to that
chapter and anticipate the results found there. This procedure would
be complete and logical. It seems somewhat unsatisfactory, however,
partly in view of the fact that the pressure is a purely mechanical quan-
tity which can be, and has been in section 3b, directly defined.

In the next section we will show that the definition (3. 7) of P isiden-
tical with the one of # made here, (12), and that r can be made to
coincide with the thermodynamic temperature by adjustment of the
scale factor k in S.

4d. Identification of Entropy, Temperature, and Pressure

The quantity S which is to be identified with the entropy is defined
as a function of the volume and the energy of the system. All other
outer variables on which the system, and therefore S, may depend will
at first be assumed to remain constant. The functional dependence of
S on V and E may be used to express the energy E as a function of V
and 8. The quantities 7 and = defined by 1/r = (0S/9E)y and
x/7r = (88/3V)g appear then as derivatives of the energy with respect
to Sand V. Namely, if first V is kept constant, it follows that

om0

1f Sis to remain constant the change of E with ¥V must be such that

al as oF
).+ Ga), (), o
or
ok S\ 78S\
@21 (a_l?)s = ‘(ﬁ),(ﬁ)r =

Now the pressure P was defined in section 3b as a purely mechanical
quantity. It was shown there that P is the negative derivative of the
energy with respect to volume under certain conditions, namely, if the
energy changes with volume in such a way that the number of quantum
states of the system below the energy remains constant. We have
stated in section 4b, and will discuss at greater length in section 4f,
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that the @ determining S by the relation S = k In Q could be calculated
as just this quantity: the number of quantum states below the energy
of the system. It follows that P as defined in equation (3. 7) is the
negative derivative of energy with respect to volume at constant value
of S, P = —(dE/3V)g. Equation (21) therefore proves r to be equal
to the pressure.

In general the thermodynamic state of the system, and therefore S,
may depend on several outer variables z, - - -z, (for instance, for a
crystal, on those determining the exact shape). Precisely the same
considerations may be applied to these as to V. If we define the quan-
tities F,, by

wm o) ,
T dz, EZy .. Ty Tpggs e - oo z,
it follows that
(4. 23) P = - (%) ,
oz, L PN SR SIPRINE

which is, according to the previous discussion, equivalent to the defini-
tion (3. 6) of the generalized force with which the variable r, tends to
increase.

We may write then

y=n

(4. 24) dE = — ¥ F, dz, + rdS,
»=1

or, if the volume only is changed,
(4. 24") dE = —PdV + 7dS.

The first n terms in (24) represent the work done by the outer forces,
or the negative of the work w done by the system. By definition, then,
the last term 7 dS is equal to the heat absorbed, g,

(4. 25) dE = —w+q= —w+ rdS.

It is known in thermodynamics that the total amount of heat absorbed
by a system in a finite process is not a function of the initial and final
thermodynamic state alone but depends on the path between these
states. The mathematical expression of this fact is that the infini-
tesimal heat absorbed, ¢ = dE + w, is not the complete differential of
any function of outer variables and energy. The definition of the
thermodynamic temperature, and simultaneously of the entropy, is that
the expression

(4. 26) 7 @E + T Fe, dz,) = dS

2
T
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is a complete differential, that is, that there exists a function S which
depends only on the state of the system, namely, the thermodynamic
entropy, for which dS = ¢g/T. This is stated usually in the short form
that 1/7 is the integrating factor of the heat.

The relation obtained above, ¢ = r d, shows that the quantity 7 has
just this property which is used to define T. Moreover, it can be
shown easily that, except for a multiplicative constant, 1/ is the only
integrating factor which has at the same time the property of being the

equilibrium parameter for heat flow, that is, of being equal for two sys-
tems in thermal contact.

Any other function ¢ satisfying the relation d¢ = ¢/f(21, "+ ,7,E) must
be & function of S alone, ¢ = ¢(8), and therefore f(z,, - - - ,za,E) = 7(dd/dS)™.
If this latter quantity is to be the same for any two systems in thermal con-
tact, d¢/dS must be & constant, and ¢ proportional to S.

Now the definition of S contains the factor k which has as yet not
been determined. 7 is proportional to ¥!, and the heat ¢ = rdS
independent of k. It is consequently possible to adjust the constant k
in such a way that the scale of 7 is identical with the scale of the thermo-
dynamic temperature I'. T is defined with the help of the perfect gas,
and in the next chapter we shall show that r and T become identical if k
is chosen as the Boltzmann constant.

We have proved, then, that r is equal to the thermodynamic temper-
ature and that 8 is equal to the thermodynamic entropy.

We may now write the equations for the change of energy in the form

“. 27) dE = —X. F, dz, + T dS
= —w+ TdS,

or, if the only outer variable of importance is the volume,
(4. 27") dE = —PdV 4 TdS.

The physical significance of equation (27) is the following. Any
infinitesimal change of energy has been split into two additive terms.
The first one arises from the action of outer forces, or changes of outer
variables. Owing to these changes the mechanical conditions of the
system are altered and therefore the energies of all quantum states are
changed. The total energy of the system varies in this process as the
average of the energies of all states available to it. This energy change
is equal to the work done on the system. During the change the number
Q of quantum states available to the system, and therefore the entropy
S = k In Q, remain constant.
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The second part of the change of energy takes place at constancy of
all outer variables. The mechanical description and the location of all
quantum states remain unaltered. The system merely absorbs or gives
up internal energy by going to a range of quantum states of higher or
lower energy. A measure of this is obtained through the function S
which depends monotonously on E. This part of the energy change,
T dS, is called the heat absorbed by the system.

4e. The Limits of Validity of the Second Law of Thermodynamics

* What, never?”’ * No, never!”
‘ What, never?” * Well, hardly ever!”
H. M. 8. Pinafore.

The second law of thermodynamics can be stated in the form: the entropy
of an isolated system never decreases. We have now claimed that this funda-
mental law is a consequence of the theorems of mechanics. It is appropriate
at this time to investigate the extent to which exceptions to this law might
conceivebly be observed.

The entropy of a system has been identified with the quantity S = kInQ,
in which Q is the number of states available to the system. The statement that
S never decreases in an isolated system of constant energy was based on three
propositions: all processes carried out upon a system without changing its
energy or involving & change in some other system correspond to the lifting or
imposing of an inhibition; the lifting of an inhibition always increases the
available states; and the imposition of an inhibition decreases the value of S
by only a negligible amount.

The first of these statements is obvious enough if we consider that any system,
no matter how complicated, can be described by means of states in phase
space; and that all the processes obeying the criterion of not resulting from a
change in other systems merely allow changes in the distribution of the sys-
tem, or prevent such changes from occurring. The second assertion, that the
lifting of an inhibition can only increase S, is sufficiently evident.

We may now examine more closely the last statement, that imposing an
inhibition results in a negligible decrease in S. The application of an inhibi-
tion limits the system to some particular distribution D with respect to some
subdivision. The decrease in S caused by this process may be arbitrarily
divided into two parts. The first of these is that which accompanies the inhibi-
tion to the most probable distribution Dy, kIn @ — kIn Qp, The second part
is the difference between the entropy of the most probable distribution D, and
that of the real distribution D into which the system happens to be frozen,
klnQp, — k1In Qp.

The first of these decreases is of no physical significance and has nothing to
do with the actual validity of the second law, but concerns only the validity of
the method of calculating entropy. This is clearly seen if we consider the
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nature of the physical act to which the imposition of the inhibition is made to
wrx:e?pond. Closing a stopcock between two flasks of gas in case they are in
equilibrium can cause no change in the system which could violate a law of
thermodynamics. Similarly, the prevention of a chemical reaction from
fluctuating away from equilibrium by removing a catalyst, or the prevention
of variations in the temperature of two bodies by severing thermal contact,
cannot have results that are contradictory to the second law.

The numerical equivalence of & In Qp, and £ In Q is due to the nature of the
acts which can be undertaken experimentally to limit a real system to one
distribution. Such operations always correspond to subdivisions of the sys-
tem which are so coarse that the logarithm of the number of distributions is
truly negligible compared to the logarithm of §2 (see equation 3).

This does not prevent an individual from making a stupid mistake of caleu-
lation by attempting to identify In Qp, and In Q for a distribution subdivision
so fine that the two quantities are not equivalent. Such an error has nothing
to do with the laws of thermodynamics, and indeed the values of In Q are so
great in practice that such a blunder is rather difficult to make.

On the other hand, there exists a definite finite probability that a given
decrease in entropy may be observed by trapping a system in a condition of
non-equilibrium. This probability can be calculated.*

We wish to determine the chance that the distribution found, after imposing
an inhibition upon a system, will have a lower entropy than that of the most
probable one by an amount —AS or greater. If we oconsider subdivisions of
the system into two parts only, the distributions can be numbered, arbitrarily,
from negative to positive values, in such a way that the most probable dis-
tribution has the number zero, Dy = 0. This was done, for instance, in the
example in section 3c. The quantity In @y — InQp is then developed as a
power series in D. The constant term in the series must be zero, and since by
definition D = 0 has the maximum value of In Qp, also the linear term is absent.
The series begins with a quadratic term. Higher powers can certainly be
neglected for small values of D, and actually in large systems up to very large
values of the quadratic term, so that

(4. 28) InQ —InQp =aD?, Sy — Sp = & = kaD?

The quantity a will depend on the type of system, its size, and the sort of sub-
division to which the distribution corresponds.

The ratio of the probability of the distribution D to the distribution 0 is
Qp/Q = D" = ¢*/% from (28). The probability of any distribution D
is then

PpdD = Ce°P*'dD
and the undetermined constant C can be evaluated by integratingt this equa-
* The method followed is essentially that of Einstein, Ann. Physik, 83, 1275 (1910).

t Pp, becomes negligibly small for large D, so that we can use the above approxi-
mation up to D =  without appreciable error.
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tion from —eo to -+, obtaining C(x/a)!/?, which must be unity, since the
sum of all probabilities is one. Then,

(4. 29) hw-emﬂwm

Now from (28) the number of distributions dD in an interval ds of entropy
is dD = ds/2kaD, which, however, must be multiplied by 2, since both positive
and negative distributions contribute to the same range ds. The probability,
P,, of a distribution with entropy less than that of the most probable one by
an amount 8, per unit range ds, is

(4. 30) P,ds = (wks)~12¢~"* ds.

For moderately large values of AS/k, the integral of this function from AS
to infinity

) e—aS/k
4. 31) L P,ds ~ —;‘E/k—')”-;

is the probability that a decrease in entropy of AS or greater will be observed.

The result is simple and perfectly general. Independently of the size of the
system, of its nature, or the kind of distribution inhibited, the probability that
a distribution differing from that of equilibrium by an entropy difference’ of
AS or greater can be found is, neglecting the relatively unimportant denom-
inator, e~45/%,

The order of magnitude of this figure can be appreciated only by ascertaining
the value of the entropy of some real system. S/k for one mole of helium
at 273°K., 1 atm., is 4 X 10%, It is seen that the chance of observing an
entropy decrease in any system of one-millionth of this amount is about 10719",
a sufficiently small number.

The probability calculated above refers to a given absolute decrease in
entropy. An appreciable relative decrease AS/S may be observed in a suf-
ficiently small system. However, owing to the multiplicative law of inde-
pendent probabilities, it is clear that the same chance exists for observing a
given absolute entropy decrease by simultaneous independent application of
inhibitions to many small systems as to one experiment on a large one.

4f. The Relation between Entropy and the Uncertainty in the Energy
The entropy of any system was found to be S = kIn Q, where Q is
the total number of quantum states available to the system at a given
energy. The exact definition of @ (section 2i) equates it to the number
of quantum states within a certain range of uncertainty 8E, so that we
can write @ = Q(E) 8E. If 6E is large compared to two neighboring
energy levels, Q(E) is a smooth function of the energy which is unam-
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biguously defined and calculable. However, @ is proportional to the
somewhat undetermined quantity sE.

Numerical calculations of S, on the other hand, are independent of
the size of 6F over & wide range. Indeed, to within the limits of accu-
racy with which on» determines S in practice, it makes no difference
whether it is equated to the logarithm of the number of states whose
energy deviates from E by less than 3E, or even to the logarithm of the

E
number of states whose energies lie below E, f Q(E) dE. This can
0

be seen readily. Since dQ/dE is always positive, 2(E) increases monot-
onously with E, and the two numbers in question differ at most by a
factor E/8E,

ok —

Unless E is chosen extremely small, In (E/SE) is completely negligible
compared to the tremendous numbers of states. For example, the
system consisting of one mole of helium at 273°K. and 1 atm. pressure
has InQ = 4 X 10%®. An excellent experiment might determine the
energy to within one part in a million. This corresponds to a value of
In (E/SE) about equal to 14. Even if sE/E is chosen as small as
10719%, In (E/SE) =~ 10%, the difference of the right- and left-hand
sides of the above incquality is only one part in 10%, and the definitions
of S as proportional to the logarithm of the number of states in the
region 3E, or of the number of states below E, would differ only by 102
per cent. It is seen, therefore, that for macroscopic systems the uncer-
tainty in any ordinary experimental measurement of the energy is far
greater than any 8E which would affect the numerical value of the
entropy.

However, from the purely theoretical point of view, one would feel
quite uncomfortable if there existed no natural limit to the smallness
of 3E. If someone were to insist that in the example above $E/E =
107'% be chosen, the entropy of helium would be very appreciably
affected. Actually, such a natural lower bound to the value of 3E does
exist as was discussed in section 2i.

It is obvious that, if a system a is in thermal contact with another
one b, so that a and b constantly influence each other and exchange
energy, it is nonsense to speak of the energy of a as exactly determined.
In fact, there exists a relationship (2. 35) between the utmost accuracy,
SE, with which the energy can conceivably be determined, and the time
At for which the system must remain undisturbed.

(4. 33) 3E - At > h.

E E E
(4. 32) In f QE) dE — In-- < In[(E) sE] < In [ Q(E) dE.
0 1]
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This means that in order to determine the energy within an accuracy
SE the system must be kept so that no energy enters or leaves it for at
least a time interval At connected to 8E by (83). The energy of a sys-
tem, then, has an infinitely sharp value only if the system is completely
-isolated for an infinite length of time.

To get an idea of the order of magnitude, one may calculate that, if
At is one second, 3E > h/1 = 6 X 107%7; and if Atis a year or 3 X 107
seconds, 8E > 2 X 1073% erg. Now the encrgy of a mole of helium at
standard conditions is about 3 X 10'° ergs, so that, using one year,
which would be a pretty long time to completely and successfully iso-
late a mole of helium, and certainly an impractically long time to leave
between ohservations, we find that 8E/E > 107*%, Since we have
seen that this quantity could be as small as 107!%", without disturbing
us much, we find that we are pretty safe.

The fact that 6E decreases as the inverse time of isolation appears to lead
to the result that a really isolated system, isovlated for infinite time, has zero
entropy. Indeed, the true stationary states of sharp energy, which on prin-
ciple could be calculated, but cannot in practice, owing to our limited capabil-
ities, have just the property that the system persists in them unless perturbed
by outer influences. The exact degeneracy of the ocorresponding levels will
presumably be small and independent of the size of the system. Classically,
these states correspond to closed orbits in phase space, but because of the
uncertainty principle of coordinate and momentum (2. 11) phase relations
cannot be determined. A completely isolated system is absolutely non-ergodic
with respect to these states.

An observation of any kind made upon the system immediately introduces
an uncertainty into its energy and causes unpredictable transitions to any one
of Q states of approximately the same energy. An exact determination of the
energy of a system precludes the knowledge of its entropy. This fact was
stated clearly from a classical basis by Gibbs.

The necessary uncertainty in the energy of a system upon which
observations are being made is sufficient to lead to an asymptotic value
of the entropy, practically independent of the conditions of observation,
provided that the system is of macroscopic size.

Since the entropy is linearly proportional to the size of the system,
it is small enough for systems of molecular size to be appreciably affected
by uncertainties in the energy, which are essentially independent of
size. In that case, only the method of Gibbs (Chapter 10) can be
applied. It consists in treating, not the one system, but instead a large
number, N, of identical systems in thermal contact. Energy NE, and
entropy NS as function of NE, for this combination system can be
calculated without trouble. The entropy S of the small system is
thereby found as a function of its average energy E.
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4g. The Third Law of Thermodynamics

The number In © for any system is naturally and completely deter-
mined and contains no additive integration constant. Moreover, it is
necessarily positive. The entropy S, of dimensions energy per degree,
has, therefore, a fixed positive numerical value dependent only on the
units of energy and temperature. This is, perhaps, the most general
statement of the third law of thermodynamics.

It is clear that although W, the phase volume measured in units of
R/, and @, the number of quantum states, are asymptotically equal for
many systems under certain conditions, nevertheless, the existence of
an absolute entropy is a consequence only of the laws of quantum
mechanics. For the definition of entropy and the derivation of the
second law, it is quite immaterial in what units the classical phase vol-
ume is measured; a change of units results only in the occurrence of an
additive constant in S. The use of W as a dimensionless quantity,
phase volume divided by h/, fixes this integration constant in such a
way that the classical expression for the entropy corresponds to the
quantum-mechanical one. However, h is essentially a quantum magni-
tude, and classical mechanics itself has no natural way of defining a
quantity of correct dimensions in whose units the phase volume could
be measured. Moreover, as the energy of the system is lowered, the
phase volume approaches zero, the classical entropy minus infinity.
Quantum mechanically the system can never exist in less than one state,
of phase volume */, so that S can at worst become zero. The third
law of thermodynamics is the quantum-mechanical law of thermody-
namics, although it was independently discovered.

The general statement of the third law given above has no great
value to the experimental thermodynamicist. It is scarcely consoling
to know that the integration constant present in the thermodynamic
definition of entropy is naturally defined, if no experimental method is
given for its determination.

Actually it appears to be impossible to give gencral directions for its
determination in purely experimental terms. It is probable that all
completely uninhibited real systems have one state of lowest energy, or
possibly a small number of states, independent of the size of the sys-
tem. S will then be zero, or practically so, at the lowest possible
energy of the system. However, this state may not be reached in
reasonable time by the system at low temperatures. All reaction rates
go down with temperature, so that real systems have an even greater
tendency to behave in a quasi non-ergodic manner at low temperatures
than at high ones. If brought into thermal contact with a heat reser-
voir at almost absolute zero for considerable periods of time, they may
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not even nearly reach this lowest state. In that case the entropy at
absolute zero may not reach zero but a residual value, the zero point
entropy, which, however, is never large.

Such systems may not differ in any single, simply detectable, experi-
mental way from others which have zero entropy at the absolute zero
of temperature. Carbon monoxide and hydrogen exhibit this behavior.
The zero point entropy of carbon monoxide is due to the fact that for
the relatively high temperature at which the crystal freezes the most
probable arrangement is one with (almost) random orientation of the
molecules with respect to the oxygen and carbon ends. At low temper-
atures, reorientation is extremely slow, although presumably one pre-
ferred orientation would be most stable. In hydrogen the zero point
entropy is connected with the slowness of transitions between even and
odd rotational states, which will be discussed later in greater detail.
In neither of these cases is the behavior surprising when once under-
stood. An idealized system with corresponding inhibitions can be
imagined, and the calculated entropies agree with measurements.
There is no reason to believe that the entropy of the real systems would
drop appreciably at lower temperatures than have been investigated.

Several objections may be raised to the common attempt to state the
third law of thermodynamics as: the entropies of perfect crystalline
substances at absolute zero are zero. The criterion of whether the
crystal is perfect or not is hard to apply except just by a determination
of its entropy. It also appears that certain non-crystalline substances
have zero entropy at 0°K. Theoretically this is predicted for the per-
fect gas and observed for the electron gas in metals, and it also appears
that the entropy of liquid helium approaches zero at absolute zero.

Nevertheless, whatever difficulties may be present in making an
exactly valid and also experimentally useful statement of the third law
of thermodynamics, the value of this law must not be underestimated.
Even were it not for the relatively recent calculations of entropies by
means of statistical mechanies, in which, of course, the absolute values
are determined, the fact that many systems have zero S at 0°K. has
been extremely useful to the experimental thermodynamicist and has
greatly aided in the calculation and tabulation of entropies and free
energies.

4h. The Conditions of Equilibrium and the Chemical Potential p

After the identification of =, r, and S with pressure, temperature,
and entropy has been performed, thermodynamics is shown to be a
consequence of statistics. For the definition and characteristics of
thermodynamic potentials we might simply refer to any textbook on
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thermodynamics. However, partly on account of the confusion of
nomenclature, we prefer to give a short outline here. The discussion
of this section is purely thermodynamic.

The entropy S, which may be defined by equations analogous to
(11) and (12),

N 1
(4. 34) (EE)V = 7’

a8 P
(4. 35) (5—‘;)! = 'i;!

is stated by the second law to increase in all spontaneous changes taking
place at constant energy. The condition of equiiibrium in an isolated
system of constant energy and volume is that S be a maximum. If
any variable x which defines a distribution of some sort in the system
is allowed to change, the change in S accompanying the variation éz in
the variable z is 68 = (8S/9z)y g 6x. This change must be zero at
equilibrium; (88/dz)y g = 0 will determine the equilibrium value of .

However, we seldom investigate experimentally the properties of
systems kept at constant volume and energy, but rather of systems at
constant volume and temperature, or even more frequently at constant
pressure and temperature. It will be found convenient to define new
extensive properties of the system, A(V,T), a natural function of vol-
ume and temperature, and F(P,T), a natural function of pressure and
temperature, as

(4. 36) A(V,T) =E — TS,
(4. 37) FPT)=A+4+PV=E+PV-TS

A is called by various authors either the Helmholtz free energy, the
free energy at constant volume, or the work function by Lewis and
Randall. F is called the Gibbs free energy, the free energy at constant
pressure, the thermodynamic potential at constant pressure, or simply
free energy by Lewis and Randall. The equilibrium conditions at
constant temperature and volume are that A have its minimum value
or that (3A/dz)y,r = 0. For a system maintained at constant pres-
sure and temperature, equilibrium will be attained if (9F/dz)pr = 0.

These conditions are easily proved. We regard the system a which
we wish to maintain at constant volume and temperature as a sub-
system in thermal contact with an infinite heat reservoir b, of the same
temperature, the whole comprising a combined system which is kept at
constant energy and volume. A change 8z in the distribution variable
z within the subsystem a will cause in @ a change in entropy 68, =
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(884/9z)y,r 8z, and also a change in energy, 8E, = (9E,/dz)y r iz,
which will be accompanied by an equal decrease in the energy of b,
SEy = — SE,. This decrease causes a change (3.Sy/9E;)y 8Ey = 88 in
the entropy of the reservoir b. Since (3Sy/0E,)y = 1/T, and 3E; =
—&E,, this entropy change is 58S = (—1/T) E,. The total variation
of entropy 88 of the combined system is

] as.,) 1 aE,)
. §=(2) sz=|(X) -2
(4. 38) (a-f) v,xaz [( 9z /yr T( oz v.r]u
= — l (BA,.) )
- T\ oz v.T “

from (36). S must be positive for every spontaneous change, from
which it can be seen that the spontaneous reaction takes place in such
a direction that A, decreases. Equilibrium will be attained when
(88/9z)y g = 0, or when (94,/3z)yr = 0.

The condition for equilibrium in subsystem a, kept at constant vol-
ume and temperature, is that the property A remains unchanged for an
infinitesimal variation in the variable z; the spontaneous process takes
place in such a direction as to decrease the value of A.

Similarly, if the part a is kept at constant temperature and pressure,
so that the infinite reservoir b is allowed, not only to lose energy to a,
but also to change in volume by an amount —&V, for an increase
8V, = (9V.a/0z)p r bz, brought about in @ by a change in the variable
z, one obtains for a change 5z in z,

as aS,, 1 aEa PaV“
(4. 39) S = (5-;)7',63: = (Oz T oz T oz )P'Tﬁz

- l(ﬂ’_) s
T\ oz P,T .
Equilibrium is established when (9F,/0z)p r is zero, and the spon-
taneous process goes in such a direction as to decrease F.

One of the most frequent problems of distribution to which the interest
of the chemist will be drawn is that of the number of molecules of a
certain kind between two parts a and b of a system. If N, the num-
ber of molecules of kind 7 in the whole system, kept at constant volume
and energy, is fixed, and N,; and Ny, are the numbers in the two sub-
systems, respectively, Na; + Ni: = N;, we may ask for the condition
that will determine the equilibrium values of N,; and N;. We shall
first consider that the interchange of energy and volume between a and
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b is inhibited, so that, during the transfer of §N,;(= —8N3;) molecules
from b to a, the energy and volume of a and b remain unaltered.* We
may write immediately

NS 98, a8,
4.40) 88 = = _ (2% X
( ) ® (aN at‘)V.S oN [(ON ci)V.E (3N b V.z] e

The equilibrium condition is that of equal values of (3.S/dN;)y g in the
two parts of the system.
If the chemical potential, u;, of molecules of type 2, is defined as

o8\ _ _m
4. 41) (aN.')v,g T’

then (40) leads to the result that, if the whole system is at one temper-
ature, molecules ¢ will move spontaneously from that part of the system
in which their chemical potential is high, to that part in which it is low,
and equilibrium will be attained when their chemical potentials are the
same in both parts of the system.

If, in the original system, energy were not inhibited from flowing
between parts a and b, the equilibrium condition would be that T, = T},
and the total entropy of the system would be unchanged by an (infini-
tesimal) transfer of energy from b to a. In consequence of this, even if
the transfer §N,; of molecules from a to b were accompanied by an
energy transportation, equation (40) would still give the total entropy
change in the combined system, and the condition of equilibrium would
be, as before, that p,; = ws. It is obvious that the same consideration
holds if changes in the volumes V, and V), are uninhibited,

Using (36) for A(V,T), we see that any change (dA)y r in A at con-
stant volume and temperature can be written as

4. 42) (dA)yr = —T@dS)y,r + (dE)y,r,

and the change (dS)y r can be written as the sum of the changes (dS)v
at constant energy plus (3S/8E)y (dE)y r = (1/T) (dE)v,r. Putting
this in (42), the terms due to the change in energy cancel, and we
obtain

(dA)y,r = =T(@S)vz
or using (41)
0A S
(4. 43) :—rv) = ‘T(w.-)v,. =

* This process, obviously, does not correspond to any simple physical or chemical
experiment, but can be undertaken in thought.
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Similarly, for (dF)p r we may substitute
(4. 4)  (dF)pr = P(dV)pr + (dA)pyr

0A
- P@V)ra + @irsr +(35) @
T
It is a well-known thermodynamic formula that (84/8V)r = —P,

so that
(dF)pr = (dA)y,1,
and we obtain from (43) that

oF
4 AN

Now if we inquire into the condition of equilibrium numbers N,; and
Np; of molecules in two parts a and b of a combined system, kept at
constant volume and temperature, or constant pressure and temper-
ature, we must demand that A, or F, respectively, be unchanged by the
transfer 6N ,; of molecules from b to a. From (43) and (44) we see that
in these cases as well as when the total system is kept at constant
energy and volume we arrive at the general relationship that at equi-
librium
(4. 46) Hai = Mbi-

The chemical potential g; is the partial molal free energy, F;, of
Lewis and Randall, divided by Avogadro’s number. It might be called
the partial molecular free energy of the molecules of type ¢, and must
at equilibrium have the same value in all parts of the system. In a
system of one component, consisting of one kind of molecules only, the
derivative of the exlensive quantity F with respect to the number of
molecules, (8F/dN)pr, in which the intensive pressure and temper-
ature are held constant, is independent of the number of molecules, and
it follows that F is just the number of molecules, NV, times p,

(4. 47) F = Nu (one-component system).

If one deals in thermodynamics with different parts of a system, one
usually refers to parts which are not only experimentally distinguish-
able, but even obviously distinguished, such as different phases, liquid
and gas, solid and liquid, etc. There is, however, no logical limitation
to the application of the laws derived above to finer subdivisions of the
system. In statistical mechanies it will be found extremely useful to
do this.



CHAPTER 5

THE PERFECT MONATOMIC GAS

(a) The Mathematical Representation of the System. (b) The Distribu-

tion of Energy among the Atoms. (c) The Most Probable Distribution.

(d) Boltzmann Statistics. (e) The Equation of State. (f) Maxwell-

Boltzmann Distribution. (g) Evaluation of ¢* and Limit of Applicability
of Boltzmann Statistics.

ba. The Mathematical Representation of the System

In this chapter we wish to calculate the properties of the simplest
thermodynamic system, namely, the perfect, monatomic gas. These
calculations are used not only as an example; they belong in the scope
of the general discussions, in so far as the results obtained here will
enable us to identify the quantity 7, defined in equation (4. 11) and
shown to be proportional to the temperature in section 4d, with the
temperature itself, provided that the proportionality factor & is chosen
as the Boltzmann constant.

We will represent the perfect monatomic gas by an idealized ergodic sys-
tem of independent mass points.

The treatment of the atoms as independent is certainly justified at
sufficient dilution. Since the forces between the atoms are of short
range, an atom will, most of the time, travel in field-free space, and will
but seldom be within the range of the forces of other atoms. The inter-
action, therefore, takes the form of collisions, that is, spontaneous
transitions to other quantum states which make the system ergodic
(compare section 3f). Since all gases become perfect at low enough
densities, independence of the atoms must be the criterion of a perfect
gas.

The states of electronic excitation of the atoms are neglected com-
pletely. This is justified for normal temperature ranges if, and only if,
the energy of these excited levels is very high. A proof of this state-
ment, and a detailed discussion of the cases of deviation from this
assumption, are presented in section 6e. In one way, however, we wish
to take the internal degrees of freedom of the atoms into account: the
ground level of the atom may be g-fold degenerate. (Compare section
2h, example 3.) Actually, in stable atoms this happens only on account
of the possible orientations of the nuclear spin, s,, so that g = 2s, + 1.

109
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The mechanical behavior of the atom is then the same as that of a mass
point, except that every state of the point corresponds to g states of
the atom.

The quantum states, or cells, of one point of mass m in a volume V
have been calculated in section 2g, example 1. To distinguish it from
the energy E of the total system, the energy of the individual molecules
will from now on always be designated by e. The energy of an atom
in any of the cells described by the three integral quantum numbers,
k., k,, k,, is given by

2
(5. 1) e = o (2 + 1+ D).

The asymptotic number of states of one mass point, whose energies lie
between € and e -+ Ae¢, was calculated in equation (2. 34) and has to
be multiplied by g to give the corresponding number of states of the
atom,

(5. 2) C(e) Ae = 4191—';:!- (2me)*/2 Ae.

The energy, E, of the total system is the sum of the energies, (1), of
the individual constituents. The possible states of the total system,
and therefore the number Q(E) of states consistent with E, and the quan-
tity S(E) of Chapter 4, depend on the kind of system the individual
particles form: Einstein-Bose or Fermi-Dirac (compare section 2k).
The calculations will be made for both cases, and for the third, classical
one, which treats the atoms as distinguishable in principle and leads to
Boltzmann statistics.

bb. The Distribution of Energy among the Atoms

First, the most probable distribution of atoms over the ranges of
energy will be determined. Assume the scale of energy, ¢, of the single
particles to be divided into regions, the jth one extending from e;_; to
¢;. The ¢; values may be chosen equidistant or otherwise, but the dif-
ference between consecutive energy values, Aje = ¢; — ¢;_;, must be
large compared to two neighboring levels of an atom; it will later be
demanded that A je also be small enough to allow summations over the
different regions to be replaced by integration over e. The surfaces of
constant energy e; divide the six-dimensional phase space (u space) of
the individual mass points into ranges, each of which contains very
many cells, or quantum states of the particles. The phase volume of
the jth region, that is, the number of quantum states whose energies lie
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between ¢;_; and ¢;, will be designated by C ;, and is equal to the quantity
C/(e;) Aje of equation (2).

A distribution D of the atoms over these energy regions is defined
by giving the numbers N, of molecules whose energies lie in the jth
region. It is now our task to calculate the number of states, Qp, which
are consistent with one distribution. The result is different for the dif-
ferent kinds of systems.

1. Einstein-Bose systems. If a state of the total system is determined
by the number of atoms in each cell it is necessary to calculate the num-
ber of ways in which N ;identical (unnumbered) balls can be distributed
among C; boxes. This is the same as the number of ways in which N;
can be expressed by a sum of C; integers, some of which may be zero,
different order of the summands being counted as different. In Appen-
dix AVII. 10 this number is calculated to be

Ci+N; -1
C; — 1IN, !

The total number of states is the product of this expression for all ranges,

. _ (Cj+Nj'—l)!.
(5. 3) % = 1,1 (C; —1)IN;!

2. Fermi-Dirac systems. If there may never be more than one atom
in a cell, N; must be equal to or less than C;. The number of ways in
which N; indistinguishable balls can be distributed into C; boxes, no
more than one to a box, must be calculated. This amounts to a calcu-
lation of the number of ways in which the C'; boxes can be divided into
two groups, of N ; full ones and (C; — N;) empty ones. This number
is given (see Appendix A VII. 9) by

c;!
N;'(C; — N)!

The total number of states is the produet of this expression over all
regions,

(5. 4) %=1 C;!
) P UINI(Ci = N,y)!

3. Boltzmann systems. If the particles were actually different and
distinguishable, a different state is obtained dependent on which of the
total N particles belong to each region. We have, therefore, first of all
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to calculate the number of ways in which N particles can be divided
into groups of N; each, such that 3;N; = N. This number is
2

NI N1
Nil---Njt-o "IN

Since the particles are completely independent, the number of ways in
which N; particles can be put into C; cells is simply C;¥/, and the
number of states consistent with the distribution is

N
(5. 5) Nznfv

For corrected Boltzmann counting (5) has to be divided by N !, the
factorial of the number of identical particles (see section 2k).

In all three cases the numbers N; have to obey two additional condi-
tions, namely, that the total number of particles and the total energy
are fixed:

(5. 6) N = XN,
(5. 7) E=XNje,

Formula (7) is an approximately correct expression for the energy only
if the width Aje of the regions is small compared to the average energy
of one atom.

6c. The Most Probable Distribution

First of all, it is desirable to transform these expressions for Qp into
continuous functions of the variables N;. If all N;'s and C;’s are large,
this can be done by using the Stirling approximation for the factorial.
Now it is obviously impossible that the N;’s of every region are large,
since we have chosen an infinite number of ecnergy ranges. On the
other hand, ranges with a small number, N;, of atoms, contribute little
to the value of In &, so that the ensuing error is negligible.

The results for the different cases are:

1. Einstein-Bose systems, if we also neglect unity compared to C;,

(5. 8) anD= 2[(0,+N,)ln (Cj‘l"Nj) —N,-lnN,-—C,-lnC,-]
J

-zlon(+2) w0
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2. Fermi-Dirac systems
5. 9) lnnD=Z[C,-lnC,~-N-lnN,-—(C,-—N-)ln(C;—N,-)]

-2[-ome ) e nm(- 0]

3. Boltzmann systems
(5.10) InQ =InNl+ X [N;InC; —N;lnN;+ N,
J

It is easily seen that, if N; <« Cj, the numerical values of (8) and (9)
approach each other, that is, they differ only in terms of the order of
N%/C;. Their common value is (10), if the term In N'! is omitted.
This had already been stated in general in section 2k. Since the factor
N !is the same for all distributions, it does not affect their relative prob-
abilities. We shall, therefore, omit the term In N ! from now on, and
use what we called in section 2k “‘ corrected "’ Boltzmann counting for
Boltzmann systems. That this division of 2, by N ! for Boltzmann
systems is actually necessary also in pure classical calculations, if one
wishes to identify k In @p, with the entropy will be discussed in detail
at the end of section 5d. We find, then, that the number of states
belonging to a distribution in a corrected Boltzmann system (which is
not realized in nature) is the limiting value of the statistical weights of
the same distribution for an Einstein and a Fermi system in case of
great dilution of the gas in the u space, that is, if N; < Cj.

The next step is the calculation of those values of N; for which @,
is a maximum, subject to the conditions (6) and (7) that the total
number of particles and total energy remain constant. The method is
the usual one for finding the maximum of a function of several variables
which are subject to restrictions (see Appendix A VI). The restricting
equations (6) and (7) are multiplied by constants « and 8 and sub-
tracted from In Qp, the function whose maximum is to be found. The
values of the variables N; at the maximum must fulfill the conditions

(5. 11) aN’[lnﬂD-aZIV,——BZe,N,]—O

The undetermined multipliers o and 8 have then to be determined by
putting the values of N ; obtained into the equations (6) and (7).
One finds for the different cases:

1. Einstein-Bose, In (C; + N;) ~InN; —a — fe; = 0;
N; 1

(5. 12) C, = etha —1



114 THE PERFECT MONATOMIC GAS [Sec. 84
2. Fermi-Dirac, In (C; — N;) — InNj — a — fe; = 0;

Ny 1 |
C; et

3. Boltzmann,InC; —InN; — a — B¢; = 0;

(5. 13)

(5. 14) N; = g By
C;
5d. Boltzmann Statistics

The elimination of a and 8 through (6) and (7), calculation of the
entropy, and identification of B with 1/kT. are mathematically easy
only for case 3, Boltzmann statistics. It is seen that both (12) and
(13) become identical with (14) if ¢* is much greater than unity, when!
the 1 in the denominator can be safely left out. This is, of course, '
precisely the condition that N; <« C;. We shall, therefore, limit our-
selves from now on explicitly to those ranges of values of E and N for
which e* > 1. In the last section of this chapter we shall calculate
e” and see what the restriction actually amounts to. It will turn out
that for all gases composed of atoms and molecules (but not for light
quanta and electrons) deviations from Boltzmann statistics occur only
at very low temperatures and high concentrations, that is, under con-
ditions where the real system is not even gaseous.

To calculate « and B in terms of N and E the numbers N ; of the most
probable distribution, (14), must be inserted into (6) and (7). The
summation over the energy ranges can be replaced by an integration,
the number of states in an infinitesimal region being given by (2). The
numerical values of two definite integrals occurring in the calculation
are

o0 a0
f 2% dr = 30112, f 2326 dz = 3112,
0 (1]
The results are then

N = Z N;= Z Cje P4 = ¢ C(e)e"'de

a/z
- 2,.0( f 2678 de

3/2
= 2.'.0 — Ve f 1I2e—= d:l:
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Bh?
E = TNy = X Cieg™? = f Cle)ee™* de

3/2
= 2.'9 hﬂ) Ve—af B/2g—Be de
(]

2"9(:”:;)3/2 —af 2% 4,

8,1 21")”’1,-«
29B 812 e,

3/3
(5.15) N=g¢g 2—”"—) Ve,

(5. 16) E =

Division of (16) by (15) eliminates a and leads to

=34 -3
(5. 17) E=36'N, f=cp

and from (15) with (17) one obtains

2xm\32 v 4r mE\*?V
5.1 =¢g{—) —=g(===) .
(6. 18) ¢ "(mﬁ N ”(3 h"’N) N

The logarithm of the number of quantum states in the most probable
distribution, Do, or the quantity S = k In Qp, of Chapter 4, as a func-
tion of energy and volume of the system can now be obtained by insert-
ing the values of N, (14), into (10) and using (17) and (18) to eliminate
a and 8. This leads to

S=kanDo=k2Nj(lng—j+l)
i N;
=kX Nj(a+ Be; + 1) = kBE + k(a + 1)N
j

5 2em\3/2 v
—-2-kN+kNln[g(§};,—) ’]Tr ,

5 4xmEN¥2 V
(5. 19) s=§kN+kN1n[g(m) Tv']‘

In Chapter 4 it was proved in general that the quantity S = k In Qp,
is the entropy for every system, provided that k is chosen correctly.
Equation (19) shows that S for the perfect gas is an extensive prop-
erty. It is proportional to the number of particles and depends other-
wise only on the density, N/V, the energy per particle, E/N, the mass
m, and finally on the small number g, the statistical weight of the
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ground level of the atom. Equation (19) is known as the Sackur-
Tetrode equation for the entropy of a monatomic gas.

It was stated in Chapter 4 that the same numerical value for S is obtained
whether it is defined as the logarithm of the number of states of the most prob-
able distribution, of the number of all states consistent with the energy, or
even of all states whose energy lies below the given total energy E. Let us
assurne the ground level of the atom to be non-degencrate, that is, g = 1. The
number of states with energy below E is, then, for the corrected Boltzmann
system, proportional to the volume of all points in the 6.N-dimensional phase
space (y-space) whose energies lie below E. Since the energy is independent
of the 3N positional coordinates, z, this phase volume is obtained by integra-
tion over all values of the z’s, leading to a factor V¥, and by integration over
all 3V momenta, p, subject to the condition that (p? + - - - + pixy) < 2mE.
This latter integral is the volume of a sphere of radius (2mE)!/? in 3N dimen-

-sions, its asymptotic value for large N is given by (4wemE/3N)3V!2 (see Appen-
dix A V).

This phase volume has still to be divided by h*¥, to make it a dimensionless

quantity, and by N! = N¥ ¢V, The result

E V N ¥ 471m E‘ v/
= [ — 2
.l; 0(E) dE (v) ¢ <3h2N

E ArmENY? V
= ¢ = }kN + KN ~) <
N kln‘/; Q(E) dE = kN n [(wl\,) N]

is in complete agreement with (19).

E
Q(E) itsell differs from f Q(EYdE only by a factor 3N,2E; therefore, S
0

or

defined as k In Q(E) differs from the value obtained above only by the additive
terms k In (3N/2) — kIn E, which are absolutely negligible compared to kN In N
and kN In E.

The division of the phase volume by N ! was introduced because all
real systems are of the Einstein-Bose or Fermi-Dirac type, and only the
“ corrected ”’ Boltzmann couuting is the limiting case for both types.
It is, however, easy to show that, even from purely classical consider-
ations, apart from any knowledge of quantum phenomena, this division
of the phase volume by N ! is necessary if we desire to identify S with
the entropy. If it had not been done, S would contain the additive
term kN In N — kN. Since this term is constant for a fixed number
of particles, it would not influence the identification of temperature
and pressure, undertaken later, or the relations between these quan-
tities. But S itself would no longer be proportional to the size of the
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system. If we have two identical, but separated, systems, that is,
systems of the same density, N/V, same 8 or E/N, and size, N, the §
of the combined system is simply twice the value of S of each part.
But, if we remove a wall between the two gases, so that we obtain one
system, of the same density and B as before, but of 2N particles, the
S value would not be the sum of the S values of both parts but would
be larger, on account of the term kN In N, by the amount 2kN In 2,
which is by no means negligible. On the other hand, the removal or
insertion of a wall between two parts of the system is a process which
leaves the thermodynamic entropy unchanged. For this reason the
division of the phase volume by N ! was introduced somewhat arbi-
trarily into classical statistics long before quantum mechanics gave
the true explanation for it.

It is seen, then, that purely classical considerations lead to the same
value for S, (19), that we obtained from quantum-mechanical argu-
ments, except, of course, for the term 3N In k, which, however, only
fixes the additive constant in the entropy in agreement with the third
law.

6e. The Equation of State
The temperature T was defined in equation (4. 11) as the inverse of
the derivative of entropy with respect to energy. Using (19) one

obtains
1 as 3 1
i (sz) =2 VE
so that
(6. 20) E = $ kNT.
Comparison with (17) shows that
5. 21 = 1
(5. 21) kT

That 8 must be a function of the temperature alone could have been
shown directly, without resorting to calculation of the entropy. If
we have, namely, two completely independent gases of, respectively,
N® and N® molecules each, with energies E) and E®, and if we
divide the u space into energy regions and calculate the equilibrium
distribution for both systems simultaneously, we find that

In ﬂp = In QD(I) + In Qp(z).
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The maximum of this quantity must be determined subject to the four
conditions

(5. 22) N® =EN,D, NP =ZTN,2,
J J
EM = ZN:'(”‘J'; E(z) = zNj(z)Gj-
i )

This means that the four quantities have to be multiplied by the unde-
termined constants oV, a'®, g0, 8 and subtracted from In @, before
differentiation with respect to the N;’s. As is to be expected, the most
probable distribution of each system is in no way affected by the exist-
ence of the other one. For each system, the ratio N ;/C; will be given
by one of the equations (12), (13), or (14), depending on the nature of
that system.

If, now, energy is allowed to flow between the two systems, so that
only the total energy E = E®") 4 E‘® is fixed, we have only three condi-
tions instead of the four of (22), and have, therefore, to multiply E"
and E® by the same constant 8 before subtracting from In 5. The
most probable distribution will have the same form as before, except
that the relation must hold that

(5. 23) M = g® =g

This means that two gases in energy contact, which are therefore at
the same temperature, have the same value of 8. In other words, 8 is
a function of temperature only.

This fact was derived quite independently of the nature of the gases;
it is valid for Fermi and for Einstein gases as well as for Boltzmann
systems, and even for a combination of two gases of different nature.
Since we have identified 1/k8 with the temperature for the Boltzmann
gas, the relation 8 = 1/kT holds also for the Einstein and Fermi gases.

The relation (20) expresses the fact that the energy at fixed temper-
ature is independent of the volume; experimentally this means that
the Joule-Thomson coefficient for a perfect gas is zero.

The pressure of any system, according to equation (4. 12), is defined

by the relation
2_(%)
T ov/)g’
or, from (19),
(5. 24) PV = kNT.

This is the well-known equation of state for a perfect gas.
We had shown in general only that 7' was a linear function of the
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temperature. Now we find that if the proportionality factor k is chosen
as the Boltzmann constant k = 1.3804 X 107¢ erg per degree, so that
k multiplied by Avogadro’s number, Ny, is R, the gas constant per mole,
the statistical and perfect gas temperatures are identical.

The pressure of the perfect gas can, of course, also be calculated
directly, without resorting to the general considerations of Chapter 4
and the identification of S with entropy. According to (1) the energy
of every state of a single particle depends on the volume in the same
way, namely, it is proportional to V2/3, Since the energy of any state
n of the total system is the sum of the energies of the independent
particles, it follows that

The pressure is defined as the force per area resisting a change in
volume, averaged over all quantum states available to the system; we
find the relation

(5. 25) =-2=_F,

which, in combination with (20), also leads to the equation of state (24).

It is seen that the considerations of this chapter could have been
carried out quite independently of the general discussions of Chapter 4.
Indeed, had we not already identified the quantities = with pressure and
r with temperature in section 4d, we could have done so with the help
of this example: the identity of equation (25) with (24) after insertion
of (20) proves the pressurc to be 7(3S/3V)g, and relation (24) then
shows r = 1/(88/9E)y to be the perfect gas temperature. Since
(8S/9E)y had been demonstrated in section 4¢ to be the same monot-~
onous function of T, and 7(8S/8V)g at constant T the same function
of pressure for all systems, the identification would have been complete
and S proved to be the entropy for all systems.

It was essential to the discussions in Chapter 4 that the constant k
in the definition of entropy as S = k In Q be the same for all systems.
The choice of k as the gas constant R divided by Avogadro’s number
assures us that, for all systems, equations (4. 10) and (4. 11) define
entropy and temperature in agreement with the conventional scale.

bf. Maxwell-Boltzmann Distribution
Going back to the formula for the most probable distribution, (14),
and using relation (21) between g and temperature, we find

(5. 26) Nj = Cje=¢il*T,
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This implies that the ratio of the number of atoms in a quantum state
k with energy ¢ to those in a state k’ of energy ¢ is

Ne

= eltw—a/kT
Ny

(5. 27)

As previously, the number of molecules N; whose energy lies in the
region hetween ¢ and ¢ + Ae will be written N (e) Ae¢, the number of
single particle cells in that region as C(e) Ae, given in (2). The most
probable number of molecules in the region Ae is then

N(e) Ae = e-«,h.g%z (2m£)1/26—¢/k1' Ae.

Elimination of ¢™* with relation (18), using 8 = 1/kT = 3N /2E, gives

2 1372
= —l—l—z-N (7‘;—7‘) 6”28_‘”7' Ae.
L

This formula can he transformed further by noting that the energy e
of a single particle is related to the magnitude of the velocity, v, by the
equation 3mv? = ¢. A range Ae of cnergy corresponds to the range
mv - Av of magnitude of velocity. If we designate by N(v) Av
(= N(e) - mv - Av) the number of particles with velocitics between v

and v + Av, we find

N2/ m\3/2 '
(5. 29) N@) av = —) N (———,) v2e ™ I2kT pp,
T kT

(5. 28) N (e) Ae

This is the familiar Maxwell-Boltzmann law of distribution of velocities.
This equation was derived in Chapter 1 (equation 1. 29) in a less strict
manner, and some of its applications and consequences were discussed
there. In Chapter 6 it will be shown that this law also holds for gases
with internal degrees of freedom.

6g. Evaluation of e” and Limit of Applicability of Boltzmann Statistics

At the beginning of section 5d it was mentioned that, although all
true gases arc either Einstein-Bose or Fermi-Dirac systems, the results
of sections 5d and 5e, which are derived for Boltzmann systems, hold
as long as the quantity e* in (14) is very large compared to unity. We
now wish to investigate in which way this condition limits the applica-
bility of the formulas of the last three sections. ¢* was calculated
in (18). Substitution of 1/kT for 8 brings this into the form

2rmkT 3”_?: _ <4rmE)3/2 vV

(5. 30) “"=g(—7:=*") ~N=9\@N) N

’
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or, introducing the pressure instead of the density,

2emkT\3/2 kT
5. 30' e = ( ) —_—
( ) I\ P

The quantity « has a direct physical significance. It was shown in
equation (4. 41) that (88/0N)yr = —u/T, in which u is the chem-
ical potential or, for a one-component system, such as the one we are
treating here, the free energy per molecule. Differentiation of (19)
with respect to N at constant volume and energy gives

N 4xmEN3?2 V
5. 31 =-L= -
. 31) (aN)n w=knl o (5iw) ¥
Comparison of (30) and (31) shows that

= .
(5. 32) a= -1

The condition e®*>> 1 demands a certain dilution of the molecules
in p space: the greater the volume per molecule and the energy per
molecule the less often it will oceur that two or more particles occupy
the same cell.

¢ increases with decreasing P, and rapidly with increasing 7. Of
the individual characteristics of the molecule only the mass and the g
factor cnter into the equation for ¢*. From (30) and (30’) one sees
that at given density and temperature, or at given pressure and temper-
ature, 8 substance with small m will have low ¢* and show deviations
from Boltzmann statistics most ecasily. Helium, therefore, which
remains perfect to very low temperatures, should be the most favorable
gas for the demonstration of this effect. Numerical evaluation shows
that

3/2mb6i2
(5. 33) e = 0026 T,
P;'.m.

where M is to be given in atomic-weight units, P in atmospheres, T in
degrees absolute. Heclium, M = 4, has no nuclear spin and a non-de-
generate lowest clectronic level; therefore, g = 1. Since it is made up
out of an even number of elementary particles (two protons, two neu-
trons, and two orbital electrons) it obeys Bose statistics. For the
boiling point of helium, T = 4.2°K., and P = 1 atm., we find " = 7.5.
It is therefore not inconceivable that deviations from Boltzmann sta-
tisties for helium could be found experimentally. However, at these
high densitics, the attractions between the atoms mask the statistical



122 THE PERFECT MONATOMIC GAS [Sec. g

effect sufficicntly so that this has not been demonstrated clearly so far.*

All other material gases have much higher boiling points, therefore
show imperfections at much higher temperatures, so that the condition
¢* > 1 is amply fulfilled. The values of ¢* at the respective boiling
points for the following substances are:

Hy, T =203, ¢ =14X10?
Ne, T=21.2K, ¢ =93X 105
A, T =8T4K, ¢ =47X10°%

Matters become very different if we consider an electron gas at high
density, such as we find inside of metals. In that case Boltzmann
statistics would become applicable only at temperatures far above the
melting point of the metals, and the formulas derived in sections 5d, 5e,
and 5f cannot even be used as approximations, but Fermi statistics (13)
has to be employed throughout (Chapter 16). For photons, which
obey Einstein-Bose statistics, (12) must be used (Chapter 16).

* See, for instance, Erich Beth and George E. Uhlenbeck, Physica, 1V, pp. 915~
924 (1937).



CHAPTER 6

THE PERFECT GAS WITH INTERNAL DEGREES OF FREEDOM

(a) Introduction. (b) The Partition Function. (c) The Separation of
the Partition Function as a Product. (d) The General Equations. (e) The
Distribution of Molecules among Internal States. (f) The Influence of
the Zero of Energy. (g) The Influence of Nuclear Spin. (h) The Entropy
of Isotope Mixing. (i) The Internal Partition Function of a Monatomic
Gas. (j) The Classical Internal Partition Function of Molecules.

6a. Introduction

In Chapter 5 the ratio N;/C; of the number of molecules, N j, to the
number of cells, C;, in an ideal monatomic gas was calculated. The
region j was defined in such a way that N ; consisted of all the molecules,
and C; of all the cells, the energy of which lay between ¢; and ¢; + Aje.
The calculation was made for the two different kinds of quantum-
mechanical systems: one, the eigenfunctions of which were all sym-
metric (Einstein-Bosc); and the other, the eigenfunctions of which
were all antisymmetric (Fermi-Dirac). For this one-component sys-
tem the chemical potential y is the free energy per molecule. In terms
of u and ¢;, the expression was found to be
N; 1
(6. 1) —C-j' = e—(:“m—r—:; i ’
the negative sign referring to the Einstein-Bose, and the positive sign
to the Fermi-Dirac, systems.

It can be seen that, although the equation was derived for a perfect
monatomic gas, the method used would be just as applicable to a sys-
tem composed of any N mechanically independent identical molecules
with C; any number of arbitrarily chosen cells, the energy of none of
which was lower than ¢;, or higher than ¢; + Aje. We shall repeat the
argument in an independent and somewhat briefer form in order to
demonstrate this.

6b. The Partition Function
A system composed of N identical independent particles in a volume
V will be considered. The number of degrees of freedom, f, per particle,
the number of coordinates necessary to specify completely the position
of the particle will not be limited to three. In general, then, not only
123



124 THE GENERAL PERFECT GAS [Sec. 6b

the three Cartesian coordinates X, Y, Z, of the center of mass, but in
addition f — 3 other coordinates will be needed to describe the position
of one molecule completely. If the particles are idealizations of diatomic
molecules f will be six, and tho three internal coordinates chosen would
he 6, ¢, and r or £, as stated in Chapter 2. Corresponding to the f
coordinates there will be f quantum numbers, and the quantum-
mechanical specification of the state of a single molecule will be made
complete by giving the values of these f quantum numbers which specify
a single cell of volume A’ in the u space. The energy of the particle
will be the sum of two terms, one depending on the translational quan-
tum numbers alone, k,, k,, and k;, and the other, the internal energy,
depending on the f — 3 internal quantum numbers. Since the different
quantum states of translational cnergy, at least, lie very close together
in the energy scale, there will be a great number of cells in any small
encrgy range.

The eigenfunctions of the system may be either all symmetric
(Finstein-Bose), or all antisymmetric (Fermi-Dirac). We shall
assume, as always, that N is a very large number. Of all the possible
quantum states of the individual molecules one group is singled out,
consisting of C; arbitrarily, but definitely, chosen states, the energies
of all of which lic between ¢; and e; + Aje. We shall investigate the
distribution of molecules between these and the remaining quantum
states. The N; molecules occupying any of the chosen C; states will
be said to form the part j of the system. This part j occupies the whole
volume of the system. The other part consists of the remainder,
coexistent in the same volume. Both N; and C, will be assumed to be
large.

The value of S;, the entropy of the part j, is k In @, and will depend
only on the number of cells C; and on the number of particles N, in the
part j of the whole system. 8, has been found by equations (5. 8)
and (5. 9) to be

N '

(6. 2) S,-=k1n$2,==k[:l:(f,-ln(1:l:——')+N,-ln -(%il)],
C; N;

in which the upper signs refer to the Einstein-Bose, and the lower signs

to the Fermi-Dirac, systems. The total derivative of S; with respect
toN;is

dS,' C,‘
3 — =kl i l
(6 3) le kln N'j +1

If the total system is to be in equilibrium with respect to the transfer
of particles between these two parts of the system at constant total
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energy, the entropy must have a maximum value with respect to such
a process. This requires that the increase in entropy of the remainder
of the system upon adding to it a particle from the part 7 must equal
the expression of equation (3). This transfer of a particle from the
region j to the remainder of the system involves not only the addition
of a particle to the remainder of the system but also the addition of an
amount of energy dE;/dNj, so that the change, —dS, /dN;, in the
entropy of the remainder of the system upon the addition to it of a par-
ticle from the region j may be written

. (IS,- aS ) (66‘) dE,
6. 4 - =|— — .
( ) dNJ ((”V E.V + oK NV (I.L‘Vj

For these partial derivatives of the entropy the thermodynamic
expressions nay be used: (3S/0N)gy is the negative of the thermo-
dynamic potential x divided by the temperature, equation (4. 41), and
(38/0E)n v is the reciprocal of the temperature, (4. 34). The quan-
tity dE;/dN j, the energy removed from the region j to the remainder
of the system with one particle, is just ¢;, the energy of one particle in
the region j.  Ouc obtains

(6. 5) — =

Equating the two relations (3) and (5) leads to equation (1).

For all real gases at moderate temperatures, —p/kT, which is always
positive, has a large value compared to 1, and unity can be neglected
compared to the very large expouential, so that the approximate form

6. 6 i = e(p——z,)ikT
(6. 6) c,

which is the classical equation, is obtained. We shall assume the
validity of this equation (6), which is equivalent to assuming that
N;/C; <« 1, in the remainder of this, and in the next several chapters.

Equation (6) holds for any arbitrarily chosen region j of energy e;.
The sum of N ; over all possible regions, covering exactly all the cells,
must be N, the total number of particles of the system. We may write

6.7 N=XN,= e‘"""'Z(.',e“f”‘T .
J j

The sum XC,e~%/*T is the sum over all quantum states of one mole-
cule of the expression ¢™/*”, This sum will be called the total partition
function of the molecules, and will be designated by the letter Q. It is
also variously known as the sum of states, or in German as the
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‘ Zustandsumme,” although these terms are more frequently reserved
for the analogous sum over the internal quantum states of the mole-
cules, which we shall introduce later and designate by Q;. The sum
can be written omitting the C; if it is understood that the summation
is to go over all the cells, or quantum states of the molecules, for which
we shall use the summation index n.

Defining Q as

(6. 8) Q = Y /T

and solving equation (7) for the chemical potential, i, we obtain a very
useful equation for this important thermodynamic property of the
system,

(6. 9) p=kT[InN — In Q].

The partition function Q is the sum over all quantum states or cells
of the molecules of the exponential of minus the energy over kT. The
energy, in classical mechanics, expressed as a function of the coordinates
and the momenta is the Hamilton function, H(p,q). The number of
quantum states in a region of phase space between ¢, and ¢; + Agy,
p1 and p; + Apy, g2 and g2 + Agy, « - -, py and p; + Apy, will be, if all
the products Ag; Ap; are large compared to k, just the volume of this
region of the phase space in units of #/,

(6. 10) C = k™7 Aq, Ap; Agq - - - Agy Apy.

The product, number of quantum states times the exponential, is then
(6. 11) Ce /T = p~fgTH(POIT pq, ... Apy,

and the sum can be approximated by an integral*

(6. 12) Q= f f f K1 H PO g, . . . dp,.,

This expression will bc valid as an accurate approximation for the
partition function if the expression H(p,q)/kT does not change appre-
ciably, compared to unity, if for any coordinate both g; and p; are
changed by an amount Ag; and Ap; such that Ag; Ap; = k. This condi-
tion means that all the quantum states are separated from their neigh-
bors by an energy interval which is small compared to k7.

* The effect of the symmetry of the equilibrium configuration of the molecule
which necessitates multiplication of this integral by the reciprocal of the symmetry
number is discussed in sections 7f and 8e.
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6¢c. The Separation of the Partition Function as a Product

For all molecules, within the approximation that the mass is inde-
pendent of the internal energy, the Hamiltonian or energy function,
H(p,q), is separable into (at least) two additive parts, the one depend-
ing only on the coordinates and momenta of the center of mass, and
the other only on the internal coordinates and momenta, ¢;, p;. To a
somewhat less accurate approximation the internal part may itself
usually be separated into a sum of terms, each depending on one only,
or a few only, of the various 2(f — 3) internal coordinates and momenta.
In these cases, as discussed in section 2h, the quantum mechanically
allowed energies can be expressed as a sum of terms, each a function of
one, or a few only, of the total f quantum numbers. If k is used for the
set k,, k,, and k,, the quantum numbers of translation of the center of
mass, and 1 is used for a set of f — 3 internal quantum numbers, the
total energy of the molecule, a function of k and i, can be written as

(6. 13) e(ki) = e(k) + €(i).

The energy of translation e(k) is itself a sum of three terms, each depend-
ing on one only of the three quantum numbers, kg, k,, or k,. If m is
the total mass of the molecule, and the quantization is assumed for
convenience to be made in a cubic box of side V!/® along each of the
three principal axes of space, then equation (2. 17) gives the energy of
translational motion as

(6. 14) ek) = ——5— (2 + K + k3).

V2/3

The sum Q of equation (8) is to be taken over all quantum numbers,
all values of k and ofi. The values which k can take are independent of
those of i, so that the summation may be represented as an independent
summation over k and over i. Using (10) for the energy, and remem-
bering that etV = ¢ - ¢¥, we obtain

(6. 15) Q = XX le® +el/kT
ki
- LT T - 0,0,

If now equation (14) is used for e(k), it is seen that Qy is itself a product
of three independent and identical sums, and we may write

(6. 16) Q= [Ex —{M/(av"'umm]a

For ordinary values of V and T, and masses corresponding to that of
the hydrogen atom or greater, the argument of the sum changes very
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slowly with k. Writing [h/2VY/3(2mkT)"?Jk = 2, and replacing the
summation by an integration, one obtains

2mkT\32[ = 3 ST\ 32
6.17) Q= SV( mz ) [f e—’zllz] = I(gll';‘?_‘) ,
[} o h
since f edz = Vn/2.
0

We may now use (17) with (15) in (9) to obtain the equation for the
free energy of one mole of the gas, F = Nyu, with A, the number of
particles, replaced by Avogadro’s number Ny, and V, the volume per
mole,

h2 3/2 A’D
(6. ]8) F = RT[]I] (%’;}:i) "V— — In Q,] y
(6. 19) Q = X /T,

i

all internal quantun states, i

The sum @; is the sum of ¢~ */*7 for all the internal quantum states of
the molecules. This is the internal partition function of the molecules.
It is often referred to as the sumn of states, .or, in German, as the
‘¢ Zustandsumme,” and is sometimes designated in the literature as Q.
Equation (15) is perfectly gencral and applies to a perfect gas consist-
ing of molecules of any degree of complexily whatsoever. The only
assumptions used in its derivation are that the molecules are mechan-
ically independent of each other, and that F/RT has a moderately large
negative value so that (6) is justified.

The condition that the Hamiltonian can be written as a sum of terms,
each depending on one pair only (or a few pairs only), of the coordinates
and their conjugate momenta, is the same as the condition that the
quantum-mechanical expression for the cnergy of the molecule can be
separated into a sum of terms depending each on only onc (or on a few
only) of the f quantum numbers. TUnder these conditions the classical
expression for @, just as the quantum-mechanical, can be separated
into a product of terms. In the classical expression each of these
terms is an integral, corresponding to the sum of the quantum-
mechanical expression.

It frequently happens that the Hamiltonian can be expressed as a
sum of terms, each depending on only one or a few pairs of the coor-
dinates and conjugate momenta, and that for several of these terms, at
a given temperature, the condition that the energy difference between
adjacent quantum states be small compared to kT is amply fulfilled,
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whereas for others the condition is definitely not obeyed. The classical
integral can then be substituted for the quantum-mechanical sum in
the factor of Q containing those degrees of freedom for which the quan-
tum energy differences are small, and the sum expression may be used
for the degrees of freedom for which this is not true.

Essentially this simplification has just been used in calculating Q.
The additive part of the Hamiltonian due to the motion of the center
of mass of the molecule is (1/2m)(p? + p? + p?), and does not con-
tain the coordinates. Substituted in (12), the integration over the
coordinates can be performed at sight, giving, by definition, just the
volume V of the system. The integration over the momenta remains
to be performed in order to calculate the classical expression for Q.
The expression is, then,

+o
(6. 20) Q= Vi3 f f f e~ wiry+d2mkTdy, dp, dp,.
—w

Separation of this into a product of three identical integrals, and the
introduction of the integration variable z = p/(2mkT)'/?, give us

3/2 4+ 3 82
o 0= v (L) - (5
)

The expression of (21) is identical with that of (17).

6d. The General Equations

We shall now proceed to derive the equations for the other thermo-
dynamic functions. To do this we calculate the entropy, S, as a sum
of the values of the entropy, S;, for the various regions j, using the
equilibrium values of N;/C; in equation (2). With equations (3) and
(5) it is found that

C; ds; iT k.
Nl.ln(v ) N’W N T

This is the second term of S;in (2). If summed over all j values, since
2N; = N and X Nje; = E, one obtains (¥ — F)/T, remembering that
Nu is the free energy F. Using this, and the thermodynamic equation
~ PV+E-F
° T T

for the entropy, one finds

(6. 22) §=X8; = E—;—F-' + TkCjln (1 +
J ]

J_V_")=E—F+f-‘-,
C; T T
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From this, the perfectly general equation

PY N
(6. 23) o =% ECiln ( X

is obtained independently of any special assumption that N;/C; is

small. Equation (23) is valid for Einstein-Bose systems (with the

positive sign) and for Fermi-Dirac systems (with the negative sign).
When N ;/C; is small one can develop

sn(122) -1

so that the sum in (23) is TN; = N, and

(6. 24) ::;" N, PV = RT (for one mole)

is obtained for Boltzmann systems.
Substitution of No/V = P/kT in equation (18) gives the free energy,

F, of the system in terms of its natural variables, P and T, per mole
of material, as

hz 3/2 P
6. 25) F = RT[ln (2’_ka T

—InQ;| (per mole).

The work function A differs from F by PV = RT (which is the same as
for a monatomic gas with a non-degenerate ground energy level), so
that the contributions of the internal degrees of freedom to these two
properties of the system are the same,

(6. 25%) F,=A=—RTlh@Q =—RTh ;e—.m/br.

The derivative of F with respect to T at constant pressure is the
negative of the entropy,

6 ~(3) -s-r[n|mE) el

d
a7 Tln Q,] (per mole),

where the negative sign has been eliminated by inverting the fraction
under the logarithm, and the 5R/2 obtained in the differentiation has
been added by multiplying the expression under the logarithm by €%/2.
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The contribution of the internal degrees of freedom to the entropy is

6.26') S; = R;T—,Tan, = [1,. a+g 2*(0 —-m/kr]

For the heat content, H, we may use the thermodynamic equation

- ~F-1(E&) = (2 (E
6.27) H=F+TS=F T(aTP T(M, P(T).

obtaining
(6. 28) H—RT[§+ T—(—l-lx Q-] ( le)
. = 5 o7 G per mole).

The energy per mole, E, differs from the heat content by PV = RT,
so that the contributions of the internal degrees of freedom to ‘these
two properties are the same:

(6. 28') H,=E = RT"’iln @ = RT z: © jaur,
QT KT

We shall presently derive equation (32), that tho total number, Ny,
of molecules with the internal quantum number i i’, and therefore with
the internal energy e(i’), is (No/Qy)e™*"/¥T per mole of gas. Equation
(28') for the internal energy, then, has the very simple interpretation
that it is the sum over all internal quantum states i of the product of
the internal energy per molecule, (i), by the number of molecules, N,
having this energy.

The expression for the heat capacity per mole at constant pressure,
Cp, is

6. 29) Cp= (—g—%) R[ T (T2 —1In Q,)] (per mole).

The contributions of the internal degrees of freedom to both Cp and
to Cy are the same:

d Ze(i)e—-(i)/lﬂ'
6.29") Cpy =Cp; = RdT(Tz——ln Qt) T —'——6;——" .

Carrying out the indicated operation of differentiation leads to

z(‘ (‘)) —e)/kT

(6. 29"") Cp=Cy; = R[Q. ,
{lef(l) ...a)/u'} ]
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which may be brought into the form of a double sum:

" = 1,1 ed) () y ~[e) +e(DV/ET
6. 29"")  Cpi = Cy 2R%§“§(M Ay, .
All the extensive thermodynamic properties, F, A, S, H, E, Cp, and
Cy, of a perfect gas with internal degrees of freedom can be arbitrarily
divided into two additive parts, one of which is due to the translational
motion of the center of mass of the molecules and is the same as for a
perfect ideal monatomic gas with a non-degenerate ground level. The
other part, the contribution of the internal degrees of freedom, is a
simple function of the logarithm of the internal partition function of the
molecules.

6e. The Distribution of Molecules among Internal States

Equation (6) may be used to calculate the average number Ny of
molecules in one particular quantum state, the quantum numbers of
which are k’ andi’. If one uses equation (13), that the energy, e(k’i’).
of the molecules in this quantum state can be expressed as a sum,
e(k'i’) = e(k’) + €(i’), one obtains

(6. 30) Nyw = oA IkT | o —e(k)/RT | o —e(i')/kT
If now the number of molecules, N;, in the one single internal quantum

state i’, but having any quantum state, k’, of translation, is obtained by
summing (30) over all values of k’, one finds

(6. 31) Ni' = e../u . (ze—c(k)/kT) . e—a(i’)/kT
k
= cuIH‘ . Qk . e—c(l’)/k!'

= T .y (2_"#1')3/2 . e = WI/ET
N .

In this expression (7) or (9) may be used, e*/*T = N/Q = N/QsQ,,
so that

N _.
(6. 32) Ny = — 70T,

Q

The internal Hamiltonian, H (p;,q;). may often be separable into two

additive parts, so that the energy (i) can be expressed as the sum of
two terms, e(m) 4+ e(n), in which m and n represent two independent
sets of internal quantum numbers (see section 2h, example 2). If this
i8 S0 we may write

(6. 33) Q =QuQn if (i) = e(m) + e(n),
Q- = ze—c(n)lﬂ" Q. = ze—o(n)/kr.
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It is clear that the same argument used to derive equation (32) may
be employed to arrive at the expression

(6. 34) Np = lV_ e—e(m)/kT

Qu
for the number Ny of molecules in the quantum state of value m’, inde-
pendent of the value of the quantum numbers of the set n.

To the range Aq; Ap; - - -Ag; Ap; - - + Agm Apm of the m coordinates
and momenta contributing an independent additive term, Hn(p,q), to
the Hamiltonian of the system, there correspond Ag; Ap; - -+ Agm Apm/h™
quantum states, provided that the range is so chosen that all the m
products Ag; Ap; are large compared to h. If the temperature is such
that Hn(p,q) changes negligibly compared to kT over the whole range,
the exponential ¢~ #=(P9/ T j5 eggentially constant over the whole
range, and the number, Ny (p,9) Aq; Ap; - - * Agm ADm, of molecules in
the portion of the u space corresponding to this range of the m coor-
dinates and m momenta will be given by

(6. 35)  Nwm(p.g) Aqy Ap; -+ - Agm Apm

= th” e—".(p.a)/lﬂ' AQI Apl ot Mm Apm-

If this condition of negligible change in H,,(p,q) compared to kT for
every range Ag; Ap; 2 h is satisfied, the factor Q,, of the partition func-
tion due to these m degrees of freedom may be calculated by means of
the classical integral as has just been discussed.

Equation (35) is the complete classical Maxwell-Boltzmann dis-
tribution law for a system of independent particles, the Hamiltonian of
which includes a potential energy. The m degrees of freedom considered
in (30) may be all the degrees of freedom of the molecules, including the
translational, or a small fraction of them, provided that these m degrees
of freedom are separable from the others of the system, that is, pro-
vided that the Hamiltonian is composed of two additive parts, one
containing only the coordinates and momenta of the m degrees of free-
dom considered, and the other containing only the remaining degrees
of freedom.

From equation (31) it is seen that the ratio, N;/N,,, of the numbers,
N;, and Ny, of molecules in the two internal quantum states i and i’
respectively, is given by

Ayi -=feld) —eli)) T
(6 36) I_v_ = e o(i) —e 3

i
1
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It is to be noted that in equations (31) and (36) as well as elsewhere
the symbols i and i’ are used to designate single (non-degenerate) states
of the molecules, and not energy levels, which might be degenerate
and consist of several states. If the ratio, N;/N;, of the numbers of
molecules in two levels, I and I, respectively, is sought, the expression
on the right of (36) must be multiplied by the ratio of the degeneracies
of the levels, that is, by the ratio of ¢;, the number of states in the level
l, to gr, the number of states in the level I. The expression then
becomes

Ni o _poy-
6. 36’ N _ O -l —et2 VT
( ) Ne g

The expressions (36) and (36’) may be thought of as the simplest cases of
the general thermodynamic relationship, AF® = RT In K, in which AF® is the
free energy difference, at standard pressure, of one mole of products and one
mole of reactants in a chemical reaction for which the mass action constant is
K. The reaction Ay — A; is a simple reaction of one reactant to give one
product for which K, the ratio of the partial pressures, is just Nj/Ny, if the
materials are perfect gases. Since both reactants and products are, by defini-
tion, inhibited to single internal quantum states, they satisfy the definition of
having no internal degrees of freedom, and behave therefore like monatomic
gases. Since the product and reactant have the same molecular weights,
their entropy difference is zero. One mole of reactants gives one mole of
products, so the change of PV in the reaction is also zero. It follows that °
AF® = AE = Nyle(i) — e(i’)] per mole. The use of this expression for AFY,
and the substitution of N;/Ny for K in the thermodynamic equation, lead to
(36).

If the reaction Ay — A; is considered, the change in PV is still zero, but the
change in entropy is not. Reactant and product have entropies R In gy and
R In g; respectively greater, per mole, than the ideal monatomic gas, due to the
gr and g; internal quantum states of the same energy which they may occupy.
Using AS = R1n (gi/gr) and AF® = AE + APV — T AS leads to (36').

6f. The Influence of the Zero of Energy

The internal partition function Q; is defined as the sum, over all
internal quantum states of the molecules, of ¢ to the power minus the
energy over kT.

Since the energy of the lowest quantum level of the molecules or
atoms may be arbitrarily assigned any value, such as zero, or ¢, it is
interesting to investigate the influence of this choice on the thermo-
dynamic functions. The entropy, which is determined by the number
of quantum states available to the system, would, at any given temper-
ature, be expected to be independent of an arbitrary translation of the
energy scale. The energy, heat content, and free energy should be
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raised in value by an amount Nge per mole, if ¢ instead of zero is
chosen for the energy of the lowest level of the molecules. The specific
heats should be unaffected by the choice. This is actually so.

The value of @; calculated under the convention that the lowest
energy is zero will be designated by the symbol @y, and that calculated
with the lowest energy assigned the value ¢ will be designated by Q..
Every term in @, will differ from the corresponding term in @, by hav-
ing an additive —e/kT in the exponent, the terms in Q, will each be
smaller than the corresponding ones in @ by a multiplicative factor
¢*T. The complete sum Q; must then be smaller than Q,, by this
factor, and the logarithm of the sum less by the additive term —eo/kT,

(6. 37) InQ; =InQq — ’:_?P ,

d o o
(6. 38) T(ﬁ) InQ = T(&‘f,) InQp + (ﬁ) ,
(6. 39) L (Tin Q) = % (T'hn Q)
AU Jd dT ie dT i0/-

Comparison of these equations with equations (25") to (29’) shows that,
whereas S and C are independent of the assignment of the energy of
the lowest level, F, H, and E are raised by eR/k = Nye if this value
is chosen as ¢, instead of zero.

In general, unless the contrary is specifically stated, the convention
will be adopted that the energy scale will be measured from the lowest
level of the atoms or molecules, so that this energy will be assigned the
value zero. In this case the encrgy, heat content, and also, with cer-
tain cxceptions which will be discussed later, the free energy and
entropy, will be zero at the absolute zero of temperature, 0°K.

6g. The Influence of Nuclear Spin

In calculating the value of @; for an atom it is customary to sum over
the different electronic quantum states of the atoms only. For a dia-
tomic molecular gas, or a polyatomic one, the summation is made over
1otational and vibrational states, as well as over the electronic, but for
most gases, atomic or molecular, the different nuclear spin states are
neglected.

The nucleus of an atom may, and often does, have a nuclear spin
magnitude of s, other than zero (measured in units of h/2x). This
nuclear spin magnitude is fixed, and cannot change (without great change
in energy), for a given isotope of a given element. The nuclear spin of
magnitude s, can take 2s, + 1 different orientations along any unique
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axis in space. These different orientations are distinguished from each
other in that the projection of the spin along the chosen axis may take
any of the 2s, 4 1 values which differ by integers from —s, to +s,
inclusive. (s, is always an integer or a half odd integer; it is integral
if the atomic weight of the isotope is even, and a half odd integer if the
atomic weight is odd.)

The magnitude of the magnetic moment associated with the nuclear
spin is so small that there is no appreciable energy difference between
the states of differing. nuclear spin orientation, even if the atom or
molecule has itself an appreciable magnetic moment due to other
causes. (The very slight energy difference is responsible for the hyper-
fine structure observed in the atomic spectra with very good in-
struments.) ;

From a statistical standpoint, then, the effect of the nuclear spin is:
only to increase the number of quantum states in every energy level of '
the molecule by a factor 2s,, + 1 for every atom present in the molecule.
This means that every term of @; is greater by a factor equal to the
product of all the (2s, + 1)’s for all the atoms in the molecule. The
result is an additive term in the logarithm of Q;, the sum of the log-
arithms of the (2s, -4 1)’s. This term is, of course, temperature inde-
pendent, and will not enter into any of the temperature derivatives
except (d/dT)T In @;, to which it will also add the sum of the log-
arithms of the (2s, + 1)’s. The result for the thermodynamic prop-
erties is that the nuclear spin contributes nothing to the energy, heat
content, or specific heat, but adds R In (2s, + 1) and —RT In (2s, + 1)
to the entropy and frce energy, respectively, for every gram atom of the
element (or isotope) of nuclear spin s,. Since the number of atoms
remains constant in every chemical or physical change, except those
of transmutation, this term cancels in every entropy or free energy
difference, and in no way influences the thermodynamic behavior of the
system.

This, however, is not the whole story. In symmetrical diatomic or poly-
atomic molecules, that is, in molecules which contain several identical atoms,
only those states are realized in nature for which the eigenfunctions are sym-
metric, or antisymmetric, respectively, depending on whether the mass num-
ber of the atoms is even or odd. For given mutual orientation of the spins not
all rotation-vibration states are possible. It can be shown that for any given
spin orientation only a fraction 1/ of adjacent rotational levels have the cor-
rect symmetry. The number 4 is called the symmetry number. It is the
number of ways in which a molecule may be rotated into positions which would
be different from the original one if the identical atoms were numbered and
distinguishable, but which look identical to the original orientation in view of
the identity of the atoms of the same element. For diatomic elements ¥ = 2.
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In a comparatively large range of rotational levels there will be only 1/yth
as many states existing in a symmetric as in a non-symmetric molecule, inde-
pendent of the nuclear spin. As long as the energy difference between adjacent
rotation levels is small compared to kT the result is only to add the term —In ¥
to the internal partition function, Q;. The fact remains, however, that there
are precisely (28, + 1)™ times as many states in a symmetrical molecule of m
identical atoms of nuclear spin s,, as there would be if the spins were zero.

As long as the energy difference between adjacent rotational quantum levels
is small compared to the temperature so that the value of the exponential
¢~*/*T ig the same for adjacent levels the effect of the nuclear spin will always
be to add In(2s, + 1) to In @;, for every atom of the isotope of spin s, present,
for symmetrical as well as for non-symmetrical molecules.

If, however, the energy difference between adjacent rotational levels is large
compared to the temperature so that the value of the exponential e=*/%7 is appre-
ciably different for two neighboring j values, then the value of In @; will depend
on whether the odd or the even values of j are available to the molecules. This
in turn will depend on the electronic and vibrational quantum numbers, and
on whether the atoms require symmetric or antisymmetric eigenfunctions, and
also, if there is a nuclear spin other than zero, on the mutual orientation of the
nuclear spin vectors in the two atoms.

This will be discussed in detail in sections 7f and 8d.

In symmetrical dialomic or polyatomic molecules containing iden-
tical atoms, although the cffect of the nuclear spin is always only to
increase the number of quantum states in any range of energy which
includes many rotational levels of the molecule, by a factor equal to
the product of the (2s, -+ 1)’s for all the atoms of the molecule, the
actual rotational states which are available to the molecule are different
for different mutual orientations of the nuclear spins.  If the energy dif-
ference between adjacent rotational levels is large compared to kT this
results in a complicated effect onln @;. At high temperatures, however,
the effect is always to add In (25, + 1) to In @, per atom in the molecule.
It is really only in molecular hydrogen and a few hydrogen derivatives,
for which the moment of inertia of the molecule is small and, conse-
quently (sece equation 2. 25), the spacing between the rotational
levels large, that the more complicated cffect of the nuclear spin is
ubservable at a temperature sufficiently high for the material to exist
in the gaseous state.

The addition of RlIn (2s, + 1) per gram atom of isotope to the
entropy, and consequently —R7T In (2s, + 1) to the free energy, is an
effect that alters none of the properties of the system, and none of the
equilibria in which the number of atoms of the various isotopes is
unchanged. Therefore, except in respect to hydrogen, just mentioned,
and then only at low temperatures, the fact that nuclear spins exist
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can be entirely forgotten in attempting to predict the behavior of
matter in bulk. This is rather fortunate, since with a few exceptions
the magnitude of the nuclear spin s,, is only imperfectly known. It is
customary to omit nuclear spin entropy in calculating or tabulating
entropy and free energy values. Unless the contrary is specifically stated
nuclear spin entropies will always be omiited.

6h. The Entropy of Isotope Mixing
One other complication present in a real system, which is usually

neglected and negligible in effect, is the fact of the existence of dif-
ferent isotopes of the same element. Different isotopes of the same
element are different atoms of the same atomic number (nuclear charge),
but of differing integral atomic weights. For most substances, although
not, of course, for hydrogen, the weights of the different isotopes are suf-
ficiently close, percentually, to the average atomic weight so that the
use of this for the mass of any of the isotopes introduces a negligible
error in any of the equations. The internal quantum states of the dif-
ferent isotopes have also almost the same energies. Substances in which
the masses cannot be regarded as identical, and in which the internal
quantum states of the molecules have appreciably different energies if
they contain different isotopes, will not be considered here. The
isotopes of these substances can be separated chemically. We wish to
discuss al present only the effect. of the fundamental non-identity of
the different isotopes on the value of the thermodynamic properties of
the system.

We see that here we must expect no effect on the observable prop-
erties of the system, since, although we are assuming that the isotopes
are really distinguishable in some way in principle, we intend from the
start to neglect all physical differences. This will actually be the
result of our considerations, but only if the temperature is moderately
high, that is, where the effect of the nuclear spin can be neglected.

The calculations of this chapter have been made under the specific
assumption that all the N particles were absolutely identical. Sup-
pose that the system which we treat consists of N; molecules of one
kind and N of another kind, with N; + Nz = N. Since the molecules
of kind 1 and those of kind 2 are entirely independent, they may be
treated as composing two different systems, coexistent in the volume
V, and in equilibrium with respect to exchanges of energy. This equi-
librium assures their having the same temperature.

The molecules of the two different types, although in some way
physically distinguishable, are so similar in all properties that the
quantum states of the molecules have the same energies for a given set
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of the f quantum numbers. The Q's and @’s of the two kinds of mole-
cules are then numerically identical.

The mole fraction of the molecules of kind 1 is n; = N;/N, and that
of the second kind isng = Ng/N,sothatn; 4+ ny = 1. Thefree energy,
per mole of material, and hence per n; moles of the molecules of type 1,
will be, for the first kind of molecules, just n, times the expression of
equation (18), with, however, N; replacing Ny under the logarithm.
Since N; = n,Ny, this can be written as n, times the expression of
equation (18) plus a term 7;RT Inn,. The free energy of the whole
system, the sum of the free energies of both kinds of molecules, will be,
since n; + ng = 1, less than the free energy of a system composed of
only one kind of particle by just the additive (negative) term
RT(nyInny + nylnng). In taking the derivative with respect to T,
equation (26), to obtain S, an additive —R(n; Inny 4+ ns In ng) will
be introduced into this property. E and H will be unaffected.

In section 2k it was pointed out that if one attempted to describe a quantum
state of a system composed of N identical particles by describing the cell of
each (numbered) particle, out of the N ! states which differed only in permnute-
tions of the particles in the cells, there could be formed only one eigenfunction
which was completely symmetric in the permutation of the particles, or only
one which was completely antisymmetric. The equations of this chapter were
derived hy using this method of counting, that is, by counting only the number
of particles in each cell instead of the cell of each numbered particle. If, how-
ever, the eigenfunctions were only to be symmetric (or antisymmetric) in
permutations of the N, particles of the first kind with themselves, and in permu-
tations of the Ny particles of the second kind with themselves, but did not need
to have any particular symmetry character with respect to permutations of
one kind of particle with one of the other kind, then every state of the old sys-
tem with all particles identical would correspond to N /Ny ! N, ! states of the
system with the two kinds of particles.

The value of 2 for the system of two kinds of particles will then be greater
than that of one kind of particle by the factor N !/N; I Nz!. The logarithm
of this factor, multiplied by k, which gives the difference in entropy, is
EWNInN — NiIn Ny — NzIn N;) or ~R(nyInm + nzln ng) per mole.

In a gas composed of molecules which contain one atom each of an
element having the mole fraction n; of isotope of type j present,. the
entropy of mixing due to the isotopes is —R X n;Inn;, which is of

J
course a positive quantity, since the mole fractions n; must be smaller
than unity.
In a later chapter we shall show that at moderate temperatures, and
indeed under the same conditions that the nuclear spin entropy is given
by RIn (2s, + 1) per gram atom, even if molecules are present con-
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taining several atoms of the element having the different isotopes, the
entropy of mixing due to the presence of the isotopes is the same per
gram atom of the element. This mecans that the entropy and free
energy differences between systems for which the number of atoms of
the different elements is the same are unaffected by the existence of
the isotopes. As with nuclear spin entropy, unless otherwise slated, the
eniropy of isotope mizing will be omitted from the calculations and tabula-
tions af entropy and free energy.

6i. The Internal Partition Function of a Monatomic Gas

The various internal quantum levels of an atom, which are due to
different elcctronic configurations, are usually scparated from each
other by an energy difference of the order of magnitude of an electron
volt, or some tens of kilocalories per mole. The value of kT at 1000°K.
is 0.08616 in electron volts, or 1.9864 k cal./mole. The exponential
e */*T for a state of encrgy 1e.v. = 23.055 k cal., mole is then ¢!
or about 1075 at 1000°K. For a gas composed of atoms, @; consists
of a sum of terms only a very few of which differ appreciably from zero
at all ordinary temperatures.

Since we have agreed to designate the energy of the lowest level as
zero, the exponential for a state of the lowest energy level is €° or unity.
The contribution to @; of the states of zero energy will then always he
an integer, the number of states in the lowest level.

The spectroscopic notation which is in common use for most atoms* is to
designate a level of the atom, or spectroscopic term, by a capital letter carrying
a left-hand superscript and a right-hand subscript. This is known as the
Russell-Saunders notation, which is applicable to atoms having Russell-Saunders
coupling. The superseript gives the ‘‘ system ” to which the term belongs,
which may be singlet, doublet, triplet, etc., designated by 1, 2, 3, ete.

This superscript, the system number, is 2s + 1, in which s is the value of
the resultant electron spin of all the electrons measured in units of 2/2w. (The
square of the vector sum of all the electron spins is s(s + 1) (k/2x)%.) s may
take integral or half integer values, and is integral if the atom or ion contains
an even number of electrons, otherwise being a half odd integer. The vector
of magnitude s can take different orientations with respect to another vector
of magnitude I.

The vector of magnitude ? is the vector sum of the orbital angular momenta
of the electrons, and 1 is always an integer. The value of [ for the term is indi-
eated by the capital letters S, P, D, F corresponding tol = 0, 1, 2, 3, respectively.

The magnitude of the vector sum of the spin, §, and the orbital angular
momentum, 7,' both vectors, is called j, and is the total angular momentum.

* See, for instance, L. Pauling and S. Goudsmit, The Structure of Line Spectra,
McGraw-Hill, New York, 1930.
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j may take values differing by integers between the two values | s — 1| and
8 + 1, inclusive, The number of different values which j may take for a given
s and given ? is the smaller of the two numbers, 25 4+ 1 or 2I + 1. The value
of j is written as a right-hand subscript in the term symbol.

The term 1S, is then to be read as: singlet system (superscript 1), the value
of the resultant electron spin s is therefore zero, the resultant orbital angular
momentum ! is zero (given by S), and the total angular momentum j is zero
(given by the subscript 0).

The term %Sy/¢ is doublet system, s = 1/2,1 =10, j = 1/2.

In these two examples, as in all terms belonging to the singlet system for
which s = 0, and also for all S terms for which I = 0, the value of j is uniquely
determined by the values of s and I. However, the term 2Py/2, doublet sys-
tem, s = 1/2, I = 1, with j = 1/2, has a companion term *Pys in which the
only difference is that j is 3/2. These two terms have energies lying moder-
ately close to each other, which is the origin of the designation that these terms
belong to the doublet system. However, since for any P term ! =1 and
21 + 1 = 3, there can never be more than three terms even if the system is
quadruplet or quintuplet, just as there never can be more than a single S term
even in a doublet or triplet system (except at entirely different energies for
which an independent S term may exist).

It is, then, to be expected that if the lowest term of an atom is an S term, or
any term belonging to a singlet system, there will probably not be another
term of the atom which is very close to the first in the energy scale, although
this may happen accidentally. If, however, the lowest term of an atom is not
an S term, and does not belong to the singlet system, it follows that there must
be one or more companion terms not differing very greatly in energy from the first.

Just to make it harder for the reader, and perhaps easier for the typesetter,
one finds in some books and journals that instead of half odd integer values of
j, the next larger integer is given. Since s is a half integer for doublet, quad-
ruplet, and sextet systems, j is always a half odd integer in these cases and
never for singlet, triplet, and quintuplet systems. The nomenclature is there-
fore unique. One must then take care to notice that for systems of even multi-
plicities, if the right-hand subscript of the term is written as an integer, the
real value of j is that of the subscript minus one-half.

The right-hand subscript j in the spectroscopic notation of the term
level is the total angular momentum due to the electrons of the atom,
measured in the quantum units of 2/2x. This angular momentum may
be regarded as a vector of magnitude j which can take 2j + 1 different
orientations in space, with the component of the vector along any
arbitrarily chosen axis taking values differing by integers from —j to
+j, inclusive. These 2j + 1 different orientations of the angular
momentum correspond to different states of the atom, each with the
same energy (in the absence of a magnetic field). They therefore
belong to the same level or term.
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The number of states belonging to the lowest level, the degeneracy
of the term, is then 2j 4+ 1. If the lowest term is an S term, or if it
belongs to the singlet system, it usually happens that there exists no
other level than the lowest with energies less than several electron
volts. In these cases up to several thousand degrees, and always in
the neighborhood of 0°K., one can write Q; = 2j + 1, where j is the
subseript in the spectroscopic notation of the lowest term. The deriv-
ative of In Q; with respect to temperature is then zero. In such cases,
one sees from equations (25’) to (29’) that the contribution of the
internal quantum states to the entropy is R In (2j + 1) per mole, to F
it is —RT In (2j + 1) per mole, and the contribution to E, H, and C
is zero.

The lowest spectroscopic term of all the noble gases is a 'Sy term.
The level consists of a single quantum state. The next level has an
energy* of 159,843 cm.”! = 19.72 e.v. or 454.6 k cal./mole in helium,
and less in the other gases until it is 8.273 e.v. for xenon. Even at
5000°K. this level contributes only 1078 to the sum @, in xenon, and
less in the other noble gases. We see that we may well write @; = 1,
In @; = 0, for the noble gases up to considerable temperatures, and
these gases are ideal monatomic gases in the sense used in the pre-
ceding chapter of having only one effective internal quantum state,
that is, g = 1.

For the alkali metals the lowest term is 2S5, so that j = 1/2, and
the degeneracy is 2. At 0°K.In @; = In 2, and the entropy per mole
would be greater than that of an ideal monatomic gas by R 1n 2 per
mole. The second term, a 2Py, with a companion 2Pz of only
slightly higher energy, has the energy 14,903.8 cm.™ in lithium and
11,178.3 em.”! in cesium. For the other alkali metals the value of
the term lies between these two limits. The 11,178.3 cm.™ term of
cesium has an exponential e~**T of 1.1 X 10~7 at 1000°K. and
3.35 X 10™* at 2000°K.

One particular example which occurs in calculating the thermody-
namic properties of some monatomic gases is instructive and extremely
easy {o handle. In the halogen afoms the lowest term is a 2Py, which
is accompanied by a P;,, term of slightly higher energy, and then
comes a rather large energy gap before the next excited level. The
2P,/ term has an energy of 407.0 cm.™ in fluorine, ¢/k = 582.7°; and
3685 cm.™, ¢/k = 5275° in bromine. The next term has an energy of

* Energy differences in atoms and molecules are observed by spectral lines the
wave numbers, 1/), of which are directly measured. The wave numbers are con-
nected with the energy differences by the relation Ae = hy = he/), and in this sense
cm.”! may be used as an energy unit; see conversion table A XIV.
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102,412 em.™? in fluorine and 63,429 cm.~! in bromine. Even at
10,000°K. this latter term contributes less than 10™* to @, in bromine,
whereas the 2Pj/; term has an exponential ¢~ **T of 0.512 at this
temperature. These atoms may be treated as if only two terms existed,
and all the higher terms may be neglected. In this particular example
the degeneracy, or number of quantum states, in the lowest term,
go, i8 2(3/2) 4+ 1 = 4; the degeneracy of the second term is 2.

We shall consider a particle which has gy quantum states of zero
energy, and g, states of energy ¢, and no other states whatsoever. @, is
then go + g:¢*/*7, and In Q, may be written as

(6. 40) In @ = In (go + gie™/*").
Differentiating,
gl
(6' 41) ]n Qi kT (g eclkT + 91)
6. 42) = (ThQ) =5 @m%ﬁ +1n (go + gie™"7),
d d e \? glgoe"“'
( 2._ £ g "

Using the symbol % for ¢/kT, and inserting the above equations in
(25") to (29’), one obtains for the contribution of the internal quantum
states to the thermodynamic properties, per mole,

(6. 44) F; = —RTIn (go + g1¢7"),
)
6. 45 H=E=RTu——m>
(6. 45) P e
(6. 46) S = R[u g—;;T— + In (go+ g:1€ ")]
6. 47 Cp = Cy; = Ru? — 29"
( ) pi = Cy, w (goe® + g1)?

At high temperatures for which u approaches zero, —F/RT and S/R
approach the same asymptotic value of In (9o + ¢1). E/RT and C/R
approach zero at high temperatures. With u = 0 the fraction of the
molecules in the upper level approaches g1/(go + ¢1) and the internal
energy per mole becomes Noe times this value, which can be seen to be
the asymptotic value of (45) as T — o , u — 0.

The functions E;/RT, —F;/RT, S;/R, and C;/R are plotted against
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a logarithmic scale of 1/u = kT/e, in Fig. 6. 1, with go and g, both taken
equal tounity. The specific-heat curve is seen to have a sharp maximum
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Fia. 6. 1. The contribution to the thermodynamic properties of a mole of gas due to
the internal quantum states of the molecules, if there are only two non-degenerate
states with an energy difference ¢, plotted against kT'/e on a logarithmic scale.

at a temperature of about 0.4¢/k. The maximum of E;/RT is at about
twice this temperature. S;/R rises rather rapidly to its high temper-
ature value of In 2, being within 10 per cent of this value below 1/u = 2.

6j. The Classical Internal Partition Function of Molecules
The classical expression for the internal partition function, Q;, may
be written as

©.48) Q=i [ HOTap, . dpy, dgy - dyy,
in which f; is the number of internal degrees of freedom, and H;(p,q) is
the Hamiltonian for the internal degrees of freedom, the total Ham-
iltonian for the molecule minus the kinetic energy due to the translation
of the center of mass.

In general, the classical expression will never be valid, at reasonable
temperatures, for the electronic degrees of freedom. If the contribution
of the electronic degrees of freedom to the partition function cannot be
expressed as a simple temperature-independent integral factor (see
section 6i), then it will be impossible to use the simple purely classical
form of (48) for Q. We shall consequently assume that, at the tem-
perature in which we are interested, no electronic levels are excited.

The number of degrees of freedom of the molecule is not influenced
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by the presence or absence of forces, and since three coordinates are
necessary to specify the position of an atom in space, the total number
of degrees of freedom of n atoms will be 3n, whether they are inde-
pendent of each other, er whether they are the constituent atoms of a
molecule. The number of internal degrees of freedom will be less by
the three coordinates of the center of gravity of the molecule, so that

(6. 49) fi=13n -3,

in which n is the number of atoms in the molecule.

There will be one geometric arrangement of the n atoms in the
molecule which will have the lowest potential energy, and the usual
convention is to choose this encrgy as zero. In this equilibrium position
all the atoms may be in one line, in which event the molecule would be
called a linear molecule, or they may not be, and the molecule would be
termed non-linear. A diatomic molecule must obviously always be
linear, as are also a few polyatomic molecules such as carbon dioxide,
CO,, and acetylene, CoH,. If the molecule is linear, two of the
3n — 3 coordinates, namely, the two angles # and ¢ discussed in section
2b, will determine only the orientation of the molecule in space with
fixed center of gravity, and will not influence the distance between
atoms, and therefore also not the potential energy. If the molecule is
non-linear there will be three such angles.

The additive contribution to the Hamiltonian due to these angles
will be only to the kinetic energy, and will be of the form

r=2o0r3 1

(6. 50) H.(p,q) El T@)
where g, is the angle, f(g,) is some function of the angle, which may be
just unity, p, is the conjugate momentum to the angle, and I, is the
moment of inertia in the equilibrium configuration of the molecule
corresponding to the angle ¢,.

The potential energy will depend only on the remaining 3n — 5 or
3n — 6 coordinates. For a diatomic molecule for which n is two, and
which is necessarily linear, this one coordinate, upon which the potential
energy depends, is simply the distance between the two atoms or, pref-
erably, the difference between this distance and the equilibrium dis-
tance, the ¢ of equation (2. 32).

It will always be possible to choose these 3n — 5 or 3n — 6 coor-
dinates for linear or non-linear molecules, respectively, so that they are
ull zero at the equilibrium position of zero potential energy. If the
potential energy is expressed as a power series in these coordinates, the
constant term gives the lowest value of the potential, which is taken

P
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as zero, and since the forces must be zero at equilibrium, the linear
terms must also all be zero. The first terms in the expansion will be
the quadratic terms. For sufficiently small displacements one can
neglect the higher-power terms. Now it is a mathematical theorem
that one can always find a transformation to new coordinates, g,, called
normal coordinates, such that there will be only perfect squares occur-
ring both in the expression for the kinetic energy and in the quadratic
terms of the potential energy, so that

(6. 51) H,(pg)= Z %p? + 3¢
a=m] g 2

in which u, is the reduced mass corresponding to the coordinate g,,
P, the conjugated momentum, and a, the force constant. The choice
of the normal coordinates has eliminated cross products of the sort
@,:9,9: from the potential energy. :

The total internal Hamiltonian will be the sum of (50) and (51). In
integrating equation (48), the limits of integration for all 3n — 3
momenta will be minus and plus iriﬁnity, and the integrals for each of

- -}

the momenta will be of the type f ez = (x/b)"'2, s0 that 3n — 3
-

products of this sort will be introduced into @;. For the angular
momenta b will be of the form (27,kTf(g,))™?, in which, as mentioned
before, f(g,) may be absent, that is, be identically unity. Since g,
occurs nowhere else in the Hamiltonian, the integration over the angle
¢r, which will be between definite limits such as zero and =, or zero and
2x, will yield an expression of the type /f'/%(¢,) dg., and the result
will be some small definite quantity independent of the temperature.

The total contribution of each of the angular coordinates plus its
conjugated momentum to the partition function will then be a product
of the general type (c,I,kT)'/?, in which ¢, is some small dimensionless
number, usually containing =.

The contribution from one of the vibrational momenta p, will be
(2xu,kT)!2, Since equation (51) is valid for only relatively small
displacements, that is, for small values of the g,’s, the whole partition
function will be correctly calculated only if kT is small enough so that
the exponential e #/*7 becomes almost zero for even rather small dis-
placements. The limits minus and plus infinity may then be used for
integration of the coordinates g,. They, then, also contribute integrals

+o
of the type f €¥'dz = (x/b)!'?, and since b is (a,/2kT), their con-
-0
tribution is each (2xk7T/a,)!/2.
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The product of the contribution of one of the vibrational coordinates
g, with that of its conjugated momentum is (4x4,/a,)''2kT. The
natural frequency », of vibration of the molecule along the normal
coordinate g, i8 (a,/u,)*/3(27), so that the contribution of this coor-
dinate and momentum to the partition function is just the factor
kT /v,.

Finally, multiplying all these factors together, dividing by /%, and
assigning one A~! to each degree of freedom, and then taking the log-
arithm, one obtains

8=3n—5 r=2
or 3n -6 kT or 3 -
6. 52) W@= X I (-) +3 im ("_l.fl’).
s=1 th r=] 2 h=

The contribution to the free cnergy F, due to these internal degrees
of freedom, is F; = —RT InQ;. The contribution to the energy E,
of the internal freedom, is E; = RT?(d/dT) In Q,, which has the
extremely simple form

(6. 53) E,=@3n—4)RT or (3n — })RT,

depending on whether the molecule is linear or non-linear, respectively.
The internal specific heat is (3n — 4)R or (3n — §)R, respectively, for
the two conditions.

It is well to examine how far these extremely simple results depend
on the special assumptions made concerning the nature of the molecules.

In the first place it was absolutely essential to assume that the class-
ical form (48) could be used for the coordinates considered. The
assumption that the molecule has an equilibrium position of zero
potential, with the interatomic distances fixed, leads to the conclusion
that, for sufficiently small displacements, at least, the potential energy
must be expressible in a quadratic form, and equations (52) and (53)
should be valid at sufficiently low temperatures.

At higher temperatures, for which configurations of higher potential
energy are attained, deviations from these equations might be expected.
However, the Hamiltonian for the molecule could always be expressed
in the Cartesian coordinates of the atomic centers, although the potential
would have a rather complicated form in these coordinates. In this
form, the kinetic energy does not include the coordinates, and, if mag-
netic forces are neglected, the potential energy is independent of the
momenta. The momenta oceur as squares in the Hamiltonian, and also
in the exponent of the unintegrated partition function, so that inte-
gration over each of the momenta introduces 7?2 as a factor in Q;, and
an additive 3BT per mole in E;. The negative potential energy occurs
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in the exponent divided by kT. The integrand of the partition func-
tion, and consequently also the definite integral, must always increase,
or at least not decrease, as T increases. @, then, receives a factor from
the integration over the coordinates which either remains constant or
increases with increasing 7, and E, always contains a positive (or zero)
additive contribution from the potential energy.

The heat capacity would have to receive an additive contribution of
at least 3R per internal degree of freedom per mole, at any temperature,
if the classical equation were valid.

Most diatomic molecules have an ohserved heat capacity C, at con-
stant volume, of about §R, which, subtracting $R for the translational
motion of the center of gravity, leaves only R for the three internal
degrees of freedom. This specific heat is due only to the two rotational
angles, The vibrational degree of freedom, which should, classically,
contribute R to C,, is actually almost completely frozen out by the
quantum conditions. The first excited vibrational level of energy ks
above the lowest level (equation 2. 22) has an energy considerably in:
excess of kT at ordinary temperatures. Classically the average energy
of the molecule in this degree of freedom should be kT, 3kT of kinetic
energy and an equal average potential energy. Ln the neighborhood of
this energy, however, there is no quantum level, and most of the mole-
cules are actually constrained to remain in the unexcited vibrational
level of lowest energy. Only a very small fraction, e™/**, of the
molecules attain the first excited level, contributing RT (hv/kT)e™"/*7
<« RT to the energy of the mole of gas.

We have assumed that the number of quadratic terms in the classical
potential energy was 3n ~ 5 in linear, and 3n — 6 in non-linear mole-
cules. Such molecules as ethane, H;CCHj, might conceivably have
free rotation about the C—C bond, so that here one would introduce
four angles which do not influence the potential energy, and therefore
expect only 3n — 7 quadratic terms in the potential. Actually it
appears that the hindrance to free rotation is great enough so that at
room temperature only a few molecules have sufficient energy to rotate.



CHAPTER 7
DIATOMIC GASES

(a) The Ideal Diatomic Molecule. (b) The Partition Function of a Rotator.

(c) The Partition Function of an Oscillator. (d) The General Diatomic

Molecule. (e) The Classical Equations for the General Diatomic Molecule.
(f) Molecules Composed of Two Identical Atoms.

7a. The Ideal Diatomic Molecule

A large proportion of all the chemically stable diatomic molecules
have a singlet (Xoo) lowest electronic level without angular momentum,
and no other electronic level with erergy low enough to become appre-
ciably excited below several thousand degrees. The low internal energy
states of such a molecule will depend on three quantum numbers, v, j,
and m, associated with the coordinates giving the displacement from
the equilibrium distance between atoms, and the two angles of the axis,
respectively (compare section 2h, example 4). The lower of these
states will be approximated fairly accurately by a formula giving the
energy as the sum of two terms, one depending on v alone, and one on
j (equation 2. 33). The energy does not depend on the value of m.
A molecule for which this was strictly true might be termed an ideal
diatomic molecule.

The ideal diatomic molecule will be defined as one whose internal
energy is given by the equation

’2
a. a= 0+ P+ 6+ (55).
with
= 2 = _Tumy
(7. 2) I pro, I m T My

I is the moment of inertia, u is the reduced mass, ry is the equilibrium
distance between the two atoms of masses m, and m,, and » is the natural
frequency of vibration of the molecule along the line of centers of the
two atoms. The quantum number m, which does not occur in the
equation for the energy, gives the projection on an arbitrary axis of the
total angular momentum vector of magnitude j. The values which m
can take depend on j, namely, 2j + 1 values differing by integers from
149
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—j to +j. In order to simplify the writing of subsequent equations
it will be convenient to define two new quantities, » and o, so that

hv  huwc
(73) ung—kT'

__h*  hBc
* 7 82IkT ~ kT’
wherew = v/cand B = h/8x%Ic, of dimensions cm™!, are most frequently
found tabulated in the literature. Values of these constants for some
diatomic molecules are given in the Appendix table, A XII.

Since equation (1) assigns the energy hv/2 to the lowest state of the
molecule with v = 0 and j = 0, which is obtained by measuring the
energy from the lowest part of the potential-energy diagram of the
molecule, we will change the equation in such a way as to measure
the energy from the lowest quantum state. Using (3) and (4), we
then obtain

(7. 5)

(7. 4)

€ s/s
T vu + j(§ + Do,

It is obvious that since the energy is written as the sum of a term
depending on v alone, and one depending on j alone, we can separate
@; into a product of two terms, in the same way that Q was separated
into Qk " Qb
(7. 6) Q=0Qv Om-

The equations for Q,, the partition function for one degree of freedom
in oscillation, and Qjy, the partition function of a two-dimensional
rotator, are

.7 Q=X
. 8) Qum = X (2§ + 1)e~¥i+ 10
>0

in the second of which the summation over m has been performed,
resulting in the multiplication of every term by (2j + 1).

The terms of @, are to be summed over all integral values of v equal
to and greater than zero. In the sum Q;y, however, there are three
different possibilities. If the molecule considered is one of a com-
pound, that is, if the two atoms composing it are not identical, but are
of different elements, or even if they are atoms of the same element but
of two different isotopes of the element, then j takes all integral values
equal to, and greater than, gero. If, however, the two atoms com-
posing the molecule are identical, then for any given mutual orientation
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of the nuclear spins of the atoms either only the odd values of j, or only
the even values of j, correspond to possible states of the molecule. The
reason for this difference between molecules composed of identical
atoms and those composed of two different kinds of atoms has already
been discussed to some extent in the paragraphs in fine print of section
6g, in which its influence on the entropy of nuclear spin was discussed.
We shall treat the subject later (section 7f) at greater length. At the
present time it will be sufficient to notice that the three different cases
may occur: that for which all integral values of j are allowed, and which
will be designated by Qym; that for which j may take only odd values,
Qjmo; or that for which it may take only even values, Qim,. The two
last conditions can occur only in elements.

Tb. The Partition Function of a Rotator

The partition function for a rotator, a body with finite (and equal)
moments of inertia, I, about only two axes, is given by equation (8),
in which j may take all integral values, Q;n,, or only even values, Qjm,,
or only odd values, Q;y,,. Obviously

(7. 9) Qjme + Qjmo = Q-

If (8) is used for only odd j values, the lowest level, for which j is
equal to unity, is assigned the energy 2kTo. This would be in contra-
diction to our agreement always to assign the energy zero to the lowest
level of the molecule. We shall designate by Qfn, the partition func-
tion for a rotator having only odd levels with the energy scale so chosen
that the lowest level with j = 1 has zero energy. It follows from the
argument given in section 6f that

(7. 10) Qo = Qs

Both the free energy and the energy calculated from Qfy, will be smaller,
per mole, by an amount 2RTs than the values calculated from Qjm,.
The specific heat and entropy will be the same from both partition
functions.

The molecule Hy has the smallest moment of inertia of any molecule,
and consequently, from (4), the largest value of 7o, namely, 84.971°.
Iodine has about the largest I encountered in a diatomic molecule which
can be obtained gaseous at moderately low temperatures. The value
of To for Iy is 0.05340°. Between these two extremes, To for HCI is
14.946°, for N, it is 2.847°, and for O; it is 2.059°. It is seen that,
except for Hy, the value of o at or above the boiling point is fairly low
for all gases. The values at the boiling points are 4.18 at T = 20.3°K.
for Hy, 0.079 at T = 189.4°K. for HCI, 0.037 at T = 77.3°K. for N,,
and 0.023 at 7 = 90.1°K. for O,.
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It is for H; alone that one is interested in the partition function for
values of ¢ of about unity or greater. For this molecule it is essential,
and not very difficult, to sum equation (8) by actual numerical summation,
term by term. If o is small, however, the terms of (8) converge very
slowly and numerical summation becomes tedious. It is possible, then,
to use an easy approximation method known as the Euler-Maclaurin
summation formula. This method approximates the sum of a function
of j, extended over integral values of j, in terms of the integral of the
function and successive derivatives of it at the value of j corresponding
to the first term. The method is applicable, of course, only if the suc-
cessive terms of the approximation converge, and, as might be expected,
when applied to (8) it is found that the convergence is good for only
small values of o.

Actually it is found that the method works fairly successfully for o
as large as unity for Qjn, although the approximations for Ej, and
Cim:, the contribution to the energy and the specific heat, respectively,
are accurate only for somewhat lower values of ¢. For Qi and
Qjmo, for which j takes values differing by 2, it is easy to substitute 2k
and 2k + 1, respectively, for j, so that the summation goes over all
integral values of k. The convergence is considerably poorer in these
cases than in the summation over all j values, and the approximation
formulas derived are valid only if ¢ is less than or equal to about 0.2.

The range of values of ¢ for which the approximation formulas, or
direct summation, are to be used is largely a question of convenience,
and dependent on the desired accuracy of the results. We shall show

the application of the summation formula to (8).
n=0o0
If X f(n)is the sum, extended over values of n differing by integers,

nwa
from a to infinity, of a function, f(n), then the sum can have a finite
value (be convergent) only if the function and all its derivatives are
zero at infinity. We may denote by f(z) the same function of a con-
tinuous variable z. The first term of the sum will be f(a). The
symbols f1(a), /™ (a), and fV(a) may be used to designate the first,
third, and fifth derivatives of the function with respect to z, at z = a.
The Euler-Maclaurin summation formula gives

@. 1) :i::f(m = f “1@) do + (@) — 3 @) + 7ef™(@
~ yodao/ @ + -

This formula is also discussed in Appendix A III. The approximation
is valid, of course, only if the sum on the right converges.
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Applying this* to (8) for Qm, for which j takes all integral values,
and the first value, a, is zero, the function f(z) is seen to be
(2z + 1)e ==+t The first term of the sum on the left-hand side,
obtained by substituting zero for'z in f(x), is unity. Differentiation
and subsequent substitution of zero for z give (2 —¢) for f1(0),
(=120 + 120% — ¢®) for f7(0), and (12002 — 1800® + 300* — o®) for
7¥(0). The next odd derivative would begin with a cubic term in o.
The integral can easily be found by substituting the new variable
z=z(x+ 1),dz = (2z + 1) dz, obtaining

-} - .} -.) l
@12 [ f@)do= f @z + 1)e==+0e gz = f e ds =t
0 0 0 o
If these values are substituted in (11), and terms of higher than the
second power in ¢ are omitted, one obtains

2 448
= g1 T4 9 L7 ...
(7. 13) Qm=¢ (1+3+15+315-{ ), ¢ < 1.0
The limit of validity given, that ¢ must be smaller than or equal to
unity, is the limit for calculations within 1 per cent. For larger values
of o one must use

(7. 13") Qe = 1+ 3672 + 5¢7% + 76712,

which are sufficient terms to give the sum within 0.1 per cent at
o = 0.7. TFewer terms need be used as o increases.

If now the Euler-Maclaurin summation formula is applied to Qjx,
in (8), for which j takes only even values, the substitution of 2k = j
gives a sum over all integral values of k, and the funetion f(z) becomes
(4z + 1)e2=(2=+s The integral of the function from zero to infinity
is just half the previous value, or 1/2s. The first term of the sum is the
same as before, and the nth derivative is 2"-fold greater than with
Qjm:- Substitution of the corresponding values in (11) leads to
Qjme = Qjm:/2, an equation which is valid for small values of s. How-
ever, the sum of (11) does not converge ncarly as rapidly, for the same
value of ¢, when used for @, as when used for Q. and indeed one
can see that with ¢ =  the convergence of (11) for Qjm, is ahout the
same as it is withe = 1 for Q. The special order of collecting terms
of the same power of o gives the illusion in the equation for Qjn, cor-
responding to (13) that the sum is convergent up to relatively large o
values, whereas this was actually not so at all in (11). Consequently,

* This leads to the same result as that first obtained by H. P. Mulholland, Proc.
Cambridge Phil. Soc., 24, 280 (1928).
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it is illusory to include the last correction term of (13) in the equation
for Qime.

Since, within the range of validity of the approximation method,
Qjm. is just half of Qjn,, it follows from (9) that Qum, = Qjme- The
corrected partition function for odd states, Q4y,, calculated by assigning
the energy zero to the level j = 1, is €2°Qyp, from (10). The equations
are, then,

1
@19 Om=Qu=y(1+5+5), o503,

the limit of validity, as before, being assigned for calculation within 1
per cent. At higher values of ¢ one must use

(7. 14')  Qume = 1 + 5e757 4 9¢7207 + 13¢74%,
Qjmo = 38—20' + 76—12’ + lle—~30¢ + 156——560’
Qj’mo =3 + 7e—10¢ + 116_28' + 158—54’.

The contribution to the various thermodynamic properties of the gas
due to these internal rotational levels can then be immediately caleu-
lated by means of equations (6. 25’) to (6. 29’). In taking the loga-
rithm of the sum 1 +0/3 + - - - it is convenient to use the approxi-
mation thatIn (1 + z) = r — 322 + - - -. The quantity ¢ is inversely
proportional to the temperature, (4), so that T'(d/dT)e = —o. The
equations for the high-temperature approximations follow. The low-
temperature range occurs so seldom that it secms to be unnecessary to
make the special developments which are most convenient for numer-
ical calculations. Tables of the functions for high values of o are to be
found in Appendix AIX.

The limits of validity given after the expressions are those for which
the approximations give the functions within 1 per cent or better. The
equations are:

(7. 15) F, = —RT In Qir

c o 803
= —_—— e — — < 0.95.
Fim RT(ln ' 3790 2835) , d <095

Fim, = F,.,=RT(1na+m2—§—§—0). ¢ < 035.

2
r;_.=RT(1n.r+1n2—-7§—§-o), ¢ < 0.35.
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d
- 2-——
(7.16) E = RT*—IngQ,
3
E,-,,,=RT(1-§—§-;—§—4%), ¢ < 09.

E’m, = Ejmo = Ew, o S 0.3.

- d d
(7. 17) S;=Rﬁ(Tani)=RTET—,ani+Rani,

o 166°
Sjm,—R(l—lna‘—Ea————g), USO.Q.

2

Sjm=sm=S;'.,=R(l -1nc—ln2—-g—o>,aso.3.

d ,d
(7.18) C=R_rT*—nQ.

m y JSO.S.

ij = CJM = CL“, = ij‘, o 5 0.2.

Cm = R(l +74"—;+ 169)

In Figs. 7. 1,7. 2,and 7. 3 the functions F/RT, E/RT, and C/R are
plotted against o.

F/RT for all j values and for even j values goes exponentially to zero
as T decreases, o increases, the molecules all settling into the single
lowest state for which j = 0. For odd j values the molecule all seeks
the lowest level of three states for which j = 1 as the temperature
decreases. This level has an entropy R In 3 per mole. If the level is
assigned zero energy, Fin,/RT becomes asymptotic to —In 3, but when
assigned the energy 2k7T's, the corresponding function Fjn,/RT becomes
asymptotic to 20 — In 3.

E/RT is seen always to approach unity at infinite temperature and
to go exponentially to zero at low temperatures, except for Eum,/RT,
which approaches 20, the energy assigned to the lowest level divided
by kT.

C/R has the classical value of unity at high temperatures, increases
at first as T is lowered, then decreases exponentially to zero at zero
temperature.
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The difference in energy between the lowest and the first excited level
is different in all three cases. For all j values it is 2 measured in units of
kTe. For only even j's the difference is 6 in these units, and for only

4 1 1
0dd j's (uncorrerted for energy of
lowest level)
0.0
/E{nj'—s; All values of j
1.0 / Asymptotic to- 1n,3==-1,0936

Only odd j's (corrected for
energy ofly=1)

y / -1-5: for Rotator
2.0 [/

-3.0
0.0 Infinite 0.5 1.0 1.5 2.0 Low
temperature o=h¥/(8T21kT) temperature

F1a. 7. 1. Free Encrgy per mole due to rotation, divided by RT.

odd j's it is 10. Correspondingly, all the functions approach their
asymptotic low temperature values at lower o values, that is, at higher

15 /
0ddj's (uncorrected for energy
of lowest level)

§\ RE—;. for Rotator

All j vadiues
05 N\ NN A

j'ggk ven j valuﬁ}\

0.0 (corrected)
2.0

0.0 infinite 0.5 1.0 15 Low
temperature o=h¥ (872IkT) temperature

Fi1a. 7. 2. Energy per mole due to rotation, divided by RT.

temperatures, for odd j values than for even j's, and lower ¢ values for
even j’s than for all j’s.

C/R and E/RT both approach unity at high temperatures for all
three cases, that is, whether all j values, or only the odd, or only the
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even, levels are available to the molecules does not affect the average
energy at sufficiently high temperatures. If, however, the two atoms
of the molecule are identical, so that only half of the rotational levels
are available to it, whether they are the odd or the even half, the effect

. < 1ot Rotator
15 R

Even j'sjonly

T

\ | j values
Ddd j's \

\ only \

0.0 Infinite 0.5 1.0 1.5 20 Low
temperature o=h*/(8W2IkT) — temperature

1.0

0.5

Fia. 7. 3. Heat capacity per mole due to rotation, divided by B.

is to make the value of the entropy lower by just R In2 per mole at
high temperatures. Correspondingly, the value of the free energy is
increased by RT In 2 if only half of the levels are occupied. We shall
see in section 7f that this also follows from classical considerations.

7c. The Partition Function of an Oscillator

The value of hv for any given molecule is always greater than the
value of h?/(8x%I), so that the quantity u, equation (3), at a definite
temperature, is greater than the value of o, equation (4). For most
molecules, and for ordinary temperatures, u is considerably greater than
unity. The quantity hv/k, which is frequently assigned the symbol 6,
has the value 5958° for hydrogen, the highest value of any diatomic
gas, and is 305.1° for iodine, which is about the lowest value encoun-
tered in a chemically stable diatomic molecule which can be obtained
gaseous at ordinary temperatures. At 300°K. it is seen that u is 19.86
for Hz, and 1.017 for Ig.

The sum Q, of equation (7) is the partition function of an oscillator.
The sum is of the general type'l +¢™* + (¢7*)> + (¢™*)* +-- -, and
since e~ * is necessarily smaller than unity, this sum can be expressed in
closed form by

(7. 19) Q, =010-eL
At ordinary temperatures u is appreciably larger than unity for most
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molecules, ¢™* is small, and Q, is scarcely greater than unity. In Q, is
then very small and the vibrational contribution to the thermodynamic
functions is almost negligible.

For rather high temperatures, » about equal to unity or less, a
useful approximation can be made by expanding the exponential as a
power series in u, 6% =1 —u + u? — ..., The algebra is straight-
forward. The result,

' = 4! v ouw oWt )
(7. 19 Qy=u (1+2+12 720+ ),
is exactly what would be obtained by application of the Euler-Maclaurin
summation formula (11) to the sum of (7). This can be readily verified,
since the continuous function is just e *#, the integral of which from zero
to infinity is ™, the valuc of the function at z = 0 is unity, and the
nth derivative at x = 0 is just (—u)™.

In taking the logarithm of the form (19’) for Q, the usual development
ismade of In (1 +z) =z — 322+ ---. Since u is inversely propor-
tional to T, (3), one has T'du/dT = —u. Substitution in equations
(6. 25") to (6. 29") for the contribution to the various thermodynamic
functions offers no difficulties. The equations are:

(7.20) F,=—~RTIQ,=RTIn(1 —¢™)

u uw ut
= RT(lnu - +§Z - ZTS—ST))

4

—RT(I + ¥ “) INoh
= m% 7317 2880 o

1

n

(7. 21) E,

RT’%—,ln Q, = RT

eu

YR VL Vi
RT(1“§+E“‘7§6)

u4

uz 1a7
= RT(I 4 'i-2- - ;7-56) — gNohv.

T.22) S, =RETme, = R[eu'i - Q1 -e"‘)]

dar 1

w? ot
=r(1- w_ry,
(l lnu+24
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d ,d
(7. 23) C.=R=T"—hQ,

u?e*
(e* —1)?

w ol
HR(l—E-i-sz).

The second term in the equations for F, and E, is —3RTu. This
term is temperature independent, since u is inversely proportional to
the temperature, and, by replacing u© with hv/kT and noting that R/k
is No, Avogadro’s number, the term can be written as —3Nohv. In
section 6f, equations (6. 37) and (6. 38), it was found that an altera-
tion in the zero from which the energy of the molecules was measured
resulted in a corresponding change in the value of E and F.

By using (5) for the energy of the diatomic molecule the zero of
energy has been so chosen that that of the lowest quantum level is zero.
As a consequence (21) gives zero energy to the system at absolute zero
temperature. This choice of zero from which to measure the energy
of the molecules is not the usual quantum-mechanical one of equation
(1), which was so chosen that the lowest point of the potential-energy
diagram of the molecule should be zero. The two differ by 3h» per
molecule or 3Nohv per mole, just the value of the second term in the
development of the free energy and the energy of the system.

The free energy and energy, according to our equations, are, then,
less, by exactly $Nohv, than they would have been found to be if the
zero of energy had been chosen as the lowest potential energy of the
molecules, and if this latter choice had been made, the equations obtained
would have been those of the last lines of (20) and (21), omitting the
constant term 3Nohv. The equations for entropy and heat capacity
would have been unaltered.

We shall later see, section 7e, that, with the omission of these constant
terms, the terms in the expansions of equations (20) to (23) which do
not approach zero at high temperatures are the same as the expressions
obtained with the classical partition function, in which case, of course,
the zero of cnergy is chosen as the lowest potential energy of the
molecule.

The functions F,/RT, E,/RT, S,/RT, and C;/R are plotted against
uin Fig. 7. 4. It is scen that all of them approach zero at the absolute
zero of temperature, and indecd they are all small at ¥ = 5 to 10, which
is about the value of u for most gases at room temperature. Since the

=R
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vibrational contribution to the heat capacity is often negligible, and the
rotational contribution has the classical value R, the total heat capacity,
at constant volume, of most diatomic gases is 5E/2 or about 5 cal. per
deg.

2.0

\ \S'/"

1.0 —_)
AN
\\ e —
\ \\
O nfinite 1.0 2.0 30 Low 40
temperature U=, /Tgh »/kT temperature

F1a.7. 4. Thermodynamic functions of one mole of monochromatic oscillators.

7d. The General Diatomic Molecule

Although very many real diatomic molecules have only a single elec-
tronic state which is important, up to temperatures of several thousand
degrees, the approximation of equation (1) for the energy due to rotation
and vibration is never exact, and deviations from it are often appre-
ciable for levels whose energies are comparable with kT at as low as
500°K. The next and fairly satisfactory approximation for the energy
in terms of vand j is

h2

o= (v+ Dhve — 2. (v + 1% +i6 + D g5
—Dehei?(j + 1) — ahe(v + )i + 1),

or, in terms of wave numbers,

(.20 &=+ B~ (v + D+ 30+ DB,

—2G+1)2Ds — v+ $)i G+ 1a.

An alternative form is frequently found in the literature, in which the
energy of the lowest level, v = 0, j = 0, is taken to be zero,

(7. 24) hlc-q = Ywo — Virowe + j(G + 1)Bo
-j2G + 1D*D, — vi(G + 1a.
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For the alternative forms (24) and (24’), the relations

(7. 25) wo = we(l — z,),

(7. 26) 7 = z.(1 + z,) >~ z,,
l &

(7. 27) Bo=B,(1—§E)

must hold for any molecule. The quantities @ and D, have the same
value in the two forms.

Equations (24) or (24’) are essentially empirical developments in
powers of the quantum numbers, the terms proportional to (v + %)2
or v2, j%(j + 1)% and (v + 3)j(j + 1) or vj(j + 1) being introduced
as first-order corrections to the simpler equation (1) involving only two
terms. The development may also be made using the perturbation
theory and quantum mechanics. It is then seen that the dimensionless
quantity z, is due to the deviation of the true potential energy of the
molecule from the Hooke’s law equation, U(§) = Zat®. If the potential
is assumed to be given by the expansion U(¢) = 3a?>(1 — bt +
[7b£3/12]1), which is the expansion of the Morse function, then z. is
related to b by the equation

R, 1

(7. 28) z.=§-;b Wl

with g the reduced mass. However, theoretically the quantities D,
and a are determined by I, we, and z,. The relationships

2
7. 29) Fea(B) -
a B[ fwxz, 1/2 ]_
(7. 30) B.~ 6 wc[( B,) 1]=34,

which also may be taken as definitions of the new dimensionless quan-
tities v and 3, are not always found to be strictly obeyed by the values
of . and « found empirically and tabulated in the literature. This is
not very surprising, since the empirical values always contain a certain
averaged correction due to still higher-order corrections to equations
(24) or (24’). Nevertheless, (29) and (30) are frequently useful where
D, and « have not been determined spectroscopically. In general, if
the experimental values from which they have been taken are reliable,
the empirical values of D, and a are preferable for our purposes to the
theoretical values of (29) and (30), just because they give a better
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approximation to the actual levels by empirically taking into account
the averaged higher-order corrections.

Both (24) and (24’) have the disadvantage that the frequency w,
or wy does not give the difference in energy between the lowest and first
excited vibration level. By writing the equation in such a way that
the difference in energy of the two lowest vibration levels enters directly,
the equations of the past section will give the contribution of vibration
to the thermodynamic properties most accurately, and the correction
terms which will be developed in this section will be smaller at any given
temperature.

We shall, consequently, use

(.81)  ip=vu—azvv - DutiG+ D1 - %G +1) - av,
where,
. _b8 _ M hwc  hoc . _ hoge

(7. 33) o=

The internal partition function @; is the sum of the exponential of
minus the energy over kT, extended over the quantum numbers v, j,
and m, and will be designated by Qyjm. It is given by the equation

V=00 j=0c0

(7. 31) QViln - z 2 (2j + 1)e—u[v—rv('—l)]-¢j(j+l)[l -4 +1) -av]‘
v=0 j=0

This sum must now be evaluated.

To do so, we first sum over j, using the approximation method of (11),
by integrating and adding one-half the value of the first term and sub-
tracting one-twelfth of the initial derivative. In the integration, as
in (12), the variable z is substituted for j(j + 1), with dz = (2j 4+ 1)dj.
In the initial derivative the term proportional to ¢ is neglected, so that
the approximation is carried to two powers of ¢ less than in deriving
(13). One obtains

(7. 35) ’-zw (2 + l)e—-i(i+l)(l—wju+l)-m
i=0

_ fw e—c(l—")s+47’¢l'dz +_1. _]_
=J, 276

The ihtegral, as also the original sum, would be infinity, if integrated
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(or summed) correctly. This is because the positive part of the expo-
nential, proportional to the square of the variable, becomes predominant
at large values of the variable. The error, of course, is introduced by
the use of the approxiniate equation (31) which is not valid to infinite
j’s.  One nevertheless can obtain a correct approximation by expand-
ing the factor ¢4 before integration into 1 + 4y202z%, and then inte-
grating. obtaining

fme—c(l ~)z 4402 dz’—‘_—'fw(l + 4,72¢z2)e—'(l-w)ldz
0 0
s b (14 L) e
= ol ) J, LY y

o 1(1 — 6v)71(1 + 8y% 1)
~ ¢ (1 4 8y%67 ! + bv).

Inserting this in (35), one obtains

(7. 36) j-zw (2] + 1)e~Id+DU—47iG+D -
i=0
= “_l(] + g + 8v%7 ! + av) .

The use of (36) in (34) yields

V=00

2
(7. 37) Qim = T ot (1 + 4; + 8—;'— + 6v> emHv e -D),

Again developing ¢~V as 1 + uzv(v — 1) + - - - , and using this in
(37), one arrives at

V=00

—_ (4 872 2 |\ —uv
(7. 38) Qvim = 20a1(1+-§+-;-+(6—-xu)v+xuv ¢

The sum, X e, has already been found to be (1 — &)™}, (19);
and the sum Xve™ is (—d/du)¥e™, which is e *(1 — ¢™¥)™2
Similarly, the sum Xv?¢*'is found to be e *(1 — e )2 +
2¢72%(1 — ¢ *)™3, Using this in (38) finally yields

1 l'd 8_72 o 2zu ].
(7. 39) Qv)n=¢(1'_"e__,,)[1+§+ . +eu__1+(cu_l)2
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Upon developing In (1 +z) ==z -+, the equation for In Qun is
seen to be

(7. 40) InQym = —lnc+§— In(1 —e¥)

8v2 ) 2zu
+ a +e"—1+(e"--l)2

The first two terms of the above expression are the first terms in the
old devclopment, (15), for In Qjm, and the third term is the expression
(20) for In Q,. The last three of the terms are new correction terms
which vanish at low temperatures.

We may define the correction term In Q. as the difference between
In Qyjm and the sum of the two approximations obtained by the use
of (1) in which the contributions of the rotation and vibration to the
energy are separated, In Q) and In @, so that,

(7. 41) InQ: = In Qujmy — In Qjy — In Q.

From (29) it is seen that v = B./w.. Neglecting the small difference
between B, and By, between w. and w, using (32), v = whe/kT, and
(33), ¢ = Bohe/kT, onc may write ¥ = o/u, 8y%/c = 8y/u. One then
finds

2
_ -1 w u .
(7. 42) nQ.=u [87+68u_1+2z(eu_1)z]

Since the term In @, is important only at high temperatures where
u is moderately small, the expansion of the first two expressions of
(21), w/(e* —1) =1 —u/2+ 4?/12 — 4*/720, and counsequently
u?/(e* — 1)2 =1 — u + 5u?/12 — 4®/12 + 4*/240, may be used.
The equation then takes the form

(7. 43) InQ. =u'@8y +5+2z) — (% + 23:)

§ 5z 2T 3( ) z )
+ “(12"’ 6) wo ¥ \720 120/ T
In these expressions, v, 8, and z are dimensionless and independent
of the temperature. The quantity u is inversely proportional to the
temperature, (32). Although the development (43) has temperature-
independent terms and terms which grow with decreasing temperatures

it is evident from the unexpanded form (42) that In Q. approaches zero
with decreasing temperature, as u becomes large.
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Of the quantities v, 3, and z, only two are independent according to

equations (29) and (30). We may use the two, v = ¢/u, and z, as
independent, writing (30) in the form
(7. 44) 5 = 6vy'/%21/2 — 6y,

and so further simplify (43) to

(7. 45)  InQc = u™'(2y + 6v'/%1% 4 22) + (3y — 34!/%/% — 21)
2

+ 2 (=3y + 3452 4 5r) — L o L (r= "% z)— -,
6 6" " 120

Since T'(du/dT) = —u, it is no great chore to perform the necessary
differentiations in order to calculate the additive contributions of these
correction terms to the various thermodynamic functions of the gas.
Using (45) one obtains

(7.46) F.= —RTInQ. = RT[_u—l 2y + 6y4/221/2 4 2z)

— (3y — 2¢!%12 — 27) — -(ui(—3-y + 3¢'/22'/% 4 51) +%:¢

u® 1/2,1/2
__E)(‘Y—.ylx +z)_... .

(7. 47) E. = RT? ?dd?'ln Q. = RT[,“—I (2y + 642212 4 2z)

u? u

3
Y 31/2,112 4 5 R PSR V2 IR V. 3 ]
6( 3v + 3%z +oz)+3z 40(7 v'22'2 ) +

(7. 48) S, = R(T:i%’ InQ; —In Q,)

= R[u-‘ (4y + 1242212 + 42)
2

+ (3y — 3413212 — 27) + %z

,u3
- 53(7 — M2V 2 gy 4 ]
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- d 2 d
(7. 49) Cc—RdTT dTan°

= R[u"' (4y + 1292212 4 42)

%2

3
_33.,_%(7_.,1/235:/2_,_1) +]
The actual numerical values of the quantities v and z vary from
1.43 1072 and 2.736 1072, respectively, for Hy, to 0.0175 10~2 and
0.278 1072, respectively, for I. The coefficient of the term RT/u in
F. and E. is, then, 0.2018 for H; and 0.0101 for I,. However, uT = 6
is 5958° for H, and only 305.1° for I, so that at T' = 500°K., » = 11.92
for Hy and 0.6102 for I;. The first term in the development (46) for
I, is —0.0165RT = —16.5 cal. at 500°K. The whole correction, '
F., is —11 cal. at this temperature for this gas. For hydrogen at this '
temperature, with » = 11.9, the development of (46) is invalid and
we must use the undeveloped equation (42). The only term which is
appreciable at this temperature is the first, —RT8y/u, in F,, and its
numerical value turns out to be —9.6 cal. at 500°K. This term is due

only to the rotational stretching.

Since the whole free cnergy of these gases is about a thousand times
as large at these temperatures, the corrections amount to about 0.1
per cent, but they increase rather rapidly in importance as the tem-
perature rises. It is scen from the values given that the corrections
are of the same order of magnitude for the two gases Hz and I, at the
same temperature, although the values of ¥ and z are very different.
This is not so surprising, since the correction terms depend mostly on
the shape of the potential energy function at the energy corresponding
approximately to kT, which is roughly the same for all molecules having
about the same binding energy. Actually N, which has an abnormally
high binding energy because of the triple bond, and consequently, in
spite of the high reduced mass, almost as high a value of uT' = 0(3336.6°)
as H,, shows only about a third as large correction terms as Hs.

For H,* and some other molecules, especially those containing a
hydrogen atom, the corrections become appreciable at temperatures
where u is much greater than unity and the expanded equations (46) to
(49) are not applicable. For these cases the unexpanded form (42), and
the equations derived from this form by differentiation, must be used.

* W. F. Giauque, J. Am. Chem. Soc., 62, 4816 (1930), and also Clyde O. Davis and
Herrick L. Johnston, ibid., 66, 1045 (1934), found it desirable to calculate Q; for Hy
by summation of observed numericul energy levels, instead of attempting to use
correction equations.
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7e. The Classical Equations for the General Diatomic Molecule

In sections 6b and 6j it was shown that the classical analogue of the
quantum-mechanical partition function is obtained by integrating over
all coordinates and momenta the exponential of the negative of the
Hamiltonian divided by k7. The internal coordinates of the diatomic
molecule are the two angles ¢ and 6 and the distance ¢ of stretching
from the equilibrium distance ry of the two atoms. These coordinates
have already been discussed in section 2h, example 2.

Since the classical approximation is valid only at high temperatures,
for which the deviations from truly harmonic vibration are appreciable,
it will be found advisable to take deviations from the ideal form of the
potential energy into account; that is, we shall not assume, as in sec-
tion 2h, that U(¢) = 3at%. It will also be necessary to consider, at
least in first approximation, the influence of the motion on the moment
of inertia I; that is, departing from our practicc in the example in
section 2h, we shall write I explicitly as a function of £, I (¢).

The most satisfactory simple general equation which has been found
to give the potential energy of a diatomic molecule as a function of the
coordinate £ fairly well is the Morse function,

(7. 50) UE) = K(1 — ¢4%)2,

This function is so chosen that its minimum value at ¢§ = 0 is zero.
Expanding the exponential, one obtains.

(7.51) U@ = KA%® — KA + 1—72 KA% — -

for low values of §.
If this is written in the form

7. 51) U = %az’(n — b b )

one sees by comparison of the two forms (51) and (51') that
(7. 52) a =2KA%, b=A.

The experimentally observable quantity z., which occurs in the
equation for the energy of the various vibrational levels of the molecule,
&= (v+ $hv, — (v + 3)%z,hv,, is found by quantum-mechanical
calculation to be related to b by the equation*

hve  heb?
7. = —— = —— .
(7. 53) Te = IK 2a

* 8ee, for instance, Pauling and Wilson, Introduction lo Quantum Mechanics,

McGraw-Hill, New York, 1935, page 271.
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Remembering that (a/p)(1/4x%) = »? = (w,c)? (equation 2. 21),
where u is the reduced mass, and using B, = h/(8x*I.c) (equation 4),
with I, = uri, one can express brg as

1/2
(7. 54) bro = (’”’“’e) = U2
B,

where the v of equation (29), v = B./w,, has been used. This equa-
tion will be used later.
The Hamiltonian for the diatomic molecule may be written (compare

equation 2. 32) as

1 2 1’3) 1. Ez( - L
(7.55) H (p.+ +ort+2e(s be+i§be),

- 21 (&) sin® @
where
£ 2
(7. 56) I(f) =Iu<1+;’o>) Ic"-'l""’O'

The integration of the exponential of minus the Hamiltonian divided
by kT must be made over the three coordinates ¢, 6, and £, and over the
three momenta conjugate to thesc coordinates, p,, ps, and p;. The
limits of integration are plus infinity and minus infinity for the three
momenta, and these limits may also be used for £. The limits are 0
to = for 6, and 0 to 2= for . The expression for @;, corrected by division
with h®, to obtain the dimensionless quantity consistent with the
quantum-mechanical equations, is then

(7. 57)
l +00 r 2 o0 o0 > ] —H( JkT

in which equation (55) must be substituted for H(p,q).
Integration over each of the three momenta is of the type

+o0
f ¢ dz = (r/a)''? so that three products of this type are intro-
-0

duced into Q. The angular coordinate ¢ does not occur in the Ham-

iltonian, so that integration from 0 to 2r just gives 2r as a product.
From the integration over p, one obtains (2xI (§)kT)!/? sin 6, and since

f sin 0 df = 2, subsequent integration over the coordinate 6 yields 2.

0
The integration over § remains to be performed, so that one obtains
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+o
(7. 58) @ = % CxI(OET)V2 . 2xI#)KT)V? . (2uukT)V?

-—00

2. 2. ¢~ (@/BTBU-BAT 1NN g

This may be shortened by using (56) for I (¢) and 8x2I,kT/h? = o},
equation (4). Further, since u, = hv,/kT = h(a/u)''?/2xkT, one may
multiply and divide by (2xkT/a)'/?, obtaining

(7. 58")

11 1 pt= E\? _.. a )uz
= e — > ~(a/2kT)EN1 —bE +(7/12)b%] — .
“ Oe Uq w2 - (1 + 70) ‘ d (ZkT :

If, in this expression, b is taken to be zero, and the term £/ry is neg-
lected, one may use

a 1/2
(7. 59) z = (éﬁ) ¢,

+o0
and the integral becomes f ¢ dz = r'/%. The first approximation,
)

which neglects the change of I with rotation or vibration and also
neglects the deviations from Hooke's law, is obtained, that
(7. 60) Qi = (oou.)™".

It will be found convenient to substitute the variable 2z, (59), for ¢,
and to note that

2kT h? 4722 T, o ¥
. — . - . = _— = 4 -
(7. 61) arl 4 SwlurgkT h%a 4 u? u

Combining (59) and (61) with (54), bro = z./*>y™*/2, one finds that

(7. 62) bt = br (_2.’_"_7..')”22 = oyu~1/3,112,
) 0 arg ‘e e ©)
and from (59) and (61) alone,
£ 2k T\/2
(7. 63) - = (_ 2 = 2usl32,
To a'rg

The use of (62) and (63) in (58’) leads to
+00
(.6 Q=—5 [ (12t
O™ -00
- e =25 ek (1 Dapy Y iz,

The small terms of the exponential may now be expanded in powers of 2,
the expansion multiplied by the square of the term in the brackets, and
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the whole expression carried out to terms of the first power in v/u, or
Zo/us- One obtains

1 +eo
(7. 65) Q= ;—;:mf '[l + 49120125 4 4yuT12?
eWe -0

+ 2:”2 —llzza + (83:1’2 1/2,, —l — _gzcu:-l) 2 + 2’:‘“‘—126] e"’dz.

+
The integral f "¢ dzis zeroif nisodd. Forn = 0, 2, 4, and 6,
-0

it is respectively x'/2, 1x!/2, 3x'/2/4, and 15x'/2/8. One obtains for @,

.66 = | 1+  @r et 420 |
The logarithm is, as usual, developed, In(l+2z)=z—-+-, whenzis

small, so that
(7. 67) InQ = —Ines, — Inu, + u;1(2y + 6z1/%41/2 4 2z,).

The equivalent quantum-mechanical expression is the In Qum of
equation (40), which has to be developed in a power series of u for com-
parison. The same result may be obtained directly by taking the nega-
tive of the equations for the free energy F, and dividing by RT, using the
sum of the expanded forms given in (15), (20), and (46) for the rota-
tional, vibrational, and interaction contributions, respectively. Neg-
lecting terms of higher than the first negative power of T, one obtains

(7. 68) In @Q; (quantum mechanical) = —In ¢ + -g —Inu
+ 5+ w2y + 65115172 + 20) + (3y — 321112 - 20)
+ 2 (= 3y + 321217 4 52).

In this expression, however, ¢ and u are obtained from the moment of
inertia in the lowest vibrational level, and from the difference in energy
of the lowest and first excited vibrational level, respectively, so that

(7. 69) o = ao(1 — $8) = ao(1 — 3z'/%4/2 4 3y),
from (33) and (30), and
(7. 70) u = u(1 — 22)

from (32).
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The quantum-mechanical expression (68) also differs from the classi-
cal expression (67) in that the zero of energy is differently chosen. The
energy e of the lowest quantum-mechanical state is kT (Ju, — }r.u.)
higher than the lowest potential energy of the molecule, so that the
quantum-mechanical In @ is expected to be greater than the classical
expression of (67) by 4u. — }z.u,, as has been discussed in section 7c.

Using (69) and (70) in (68), expanding In (1 — 45) and In (1 — 2z),
and using ¢ = uy, one obtains

(7. 71) In @; (quantum mechanical) = —~ In ¢, — In u,
+ @y + 621212 4 22) 4 R+ ( 2v + 6z'/%y!/? + ) —

in which the small difference between z and z, has been neglected.

Except for the expected term eyo/kT, the only difference between (67)
and (71) is in the small terms proportional to » and therefore to the
reciprocal of the temperature. Terms proportional to higher inverse
powers of T have been neglected in the quantum-mechanical expression;
the largest of these was —u?/24, (20).

It is quite usual to find that the difference between the quantum-
mechanical and classical expressions for In @ is only in terms proportional
to the second or higher inverse power of 7. In the above example it can
be seen that the small terms proportional to T~ arise from a combination
of quantum corrections proportional to 7% and interaction terms
proportional to T.

Returning to an examination of the classical expression (67), since
¢ and u, are both proportional to T, one obtains for the contribution
E; to the energy, and C; to the heat capacity,

(7. 72) E, = RT? J‘-an:

= RT[2 + w ' (2y + 6212412 4 2z,)],

d dE
Ci =R— d T ln Qg

= R[2 + 2u l(2—1 + 6z"’ 12 4 22,)].

Both internal energy and internal heat capacity have the classical
values 2RT and 2R, respectively, calculated in section 6f for a diatomic
molecule, plus an additional correction term proportional to T2 and 7,
respectively, which arises from the interaction between rotation and
vibration, and from the deviation from the Hooke's law equation for the
potential energy assumed in section 6j.
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7f. Molecules Composed of Two Identical Atoms

It was remarked at the end of section 7a that, if the two atoms of a
diatomic molecule are identical and have no nuclear spin, only half of
the rotational levels are allowed quantum levels of the molecule. For
non-zero nuclear spin every second rotational level is allowed for a given
mutual orientation of the spin. In section 7b the partition function of
rotation for the occurrence of only odd and only even j’s was calculated,
along with the case that all rotational levels were allowed.

It was found that, at high temperatures, the partition function for
only odd j’s is equal to that for only even j’s, and to half the partition
function for all j’s. The effect is that, at high temperatures, the energy,

(16), and heat capacity, (18), is the same for all three cases, but the mole-
cule with only half of the levels allowed has a lower entropy, (17), by
—R In 2, and consequently a higher free energy, (15), by RT In 2, than
the molecule with all levels allowed.

The reason for the prohibition of the even or odd j levels is that the
wave functions of rotation are alternately symmetrical and antisym-
metrical with respect to exchange of the nuclei, for even and odd j's.
If the two atoms are identical, only wave functions which have a definite
symmetry character with respect to this exchange occur in nature, so
that, only odd, or only even, rotational levels can actually exist. The
complete consideration of the details of the selection is somewhat compli-
cated by the role of the nuclear spin and will be discussed at greater
length in fine print at the end of this section.

One analogy may be found enlightening. The necessity of using only
symmetric (Finstein-Bose) or only antisymmetric (Fermi-Dirac) wave
functions resulted in reducing the total number of quantum states of a
system of independent particles, from the number mathematically
possible with distinguishable particles, by an amount that was practically
equivalent to division by N !if the particles were identical and the num-
ber of particles per cell was small. The effect of having two identical
atoms in a diatomic molecule is to reduce the number of quantum states
in a large range of j levels, by 2 ), or to one-half the number of states in
a molecule with distinguishable atoms.

This had already been proved classically by Ehrenfest and Trkal.*
As we have frequently mentioned, the classical phase volume is to be
measured in such a way that points which differ only in a permutation of
the identical atoms are counted once only. It is seen, then, that a
rotation of a molecule consisting of two identical atoms by an angle
around the center of mass corresponds exactly to such a permutation.
The two points of phase space differing only in such a rotation should

* Ehrenfest and Trkal, Proc. Sect. Sci. Amsterdam, 28, 169 (1920).
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then be counted as only one point. In this way, of the possible range of
values of the orientation angles, only one-half lead to intrinsically differ-
ent configurations of the molecule; the phase volume is therefore cut in
half, and the entropy, S = k In W, contains the additive term —% In 2
per molecule, due to the fundamental identity of the atoms.

To express the same statement differently, the phase volume W to be
used in the equation S = k In W must be calculated by using numbered
particles, and then subsequently dividing by the factorials of the numbers
of identical particles, if the entropy S is to be an extensive property of
the system.

A diatomic gas, Agj, containing N identical molecules, each com-
posed of two identical atoms, actually consists of 2N identical atoms of
the element. The phase space of such a system must be divided by
2N | o PN NN 2N,

This gas must be compared with a gas AB containing N identical
molecules each consisting of two distinguishable atoms of types A and B,
respectively. The molecules, however, will be assumed to have the
same mechanical properties, mass, frequency, and moment of inertia, as
in the first gas. The actual phase space calculated with numbered atoms
will be different from that of the former gas, and indeed smaller by the
factor 27¥. This is seen from the fact that in gas A, with all atoms
identical any atom can combine with any other atom, leading to 2N !/
2VN 1 = 2¥N¥¢V (different possible molecules if ihe atoms were
numbered. In the gas AB only molecules in which atoms of type A are
combined with atoms of type B are presumed to be present so that
N1 = NV different molecules of numbered atoms are present.
However, this phase space calculated with numbered atorhs is to be
divided now, not by 2N ! as formerly, but by N,! N,!=N©# =
N?Ng—2N_ The total phase volume W, corrected by division with the
factorials, will be less in the gas A; by the factor 27¥ than in the gas AB
of the distinguishable atoms. The entropy S = &k In W will be less by
the additive —R In 2 per mole for an elementary diatomic gas than for a
mechanically similar compound.

That this difference between identical and distinguishable atoms in
one molecule is a necessary consequence of the division of the phase
space of a monatomic gas by N !, and not merely an unnecessary,
although logical, extension of the idea, is shown by the following con-
sideration. Suppose that we calculate S at different energies classically,
for the element consisting of 2N identical atoms. At very high energies
this system will actually be completely dissociated into a monatomic gas
of 2N mechanically (almost) independent atoms, and our convention
demands division by 2N 1. At lower energies there is obviously no dis-
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continuous change in the properties of the system which would allow us
to change this convention. At low energies, however, if the mechanical
properties of the atoms are such as to form diatomic molecules, this will
actually take place, and the system will exist as a diatomic gas of N
molecules.

It is necessary classically to make the division by the factorials of the
numbers of identical particles in the system consistently, whether all
the particles are independent or not, in order to calculate correctly the
equilibria between dissociated and undissociated molecules.

Quantum-mechanical rules for the selection of only symmetrical or
only antisymmetrical wave functions lead to the result that, if nuclear
spin is absent, only odd or only even j’s can occur in a diatomic element,
with resulting decrease in S by the term —R In 2.

In diatomic elements with nuclear spin the same result is obtained at
high temperatures, but in a more complicated manner. If the nucleus
has spin s, there exist (2s, + 1)2 possible orientations of the two
nuclei in the molecule. Then both odd and even j’s occur, but with any
giren mutual spin orientation of the two atoms, only odd or only even j
values are allowed. The total number of states, in a large range of j's, is
then exactly half of (2s, + 1)2 times the number which would be pres-
ent if the atoms were not identical, and no spin were present. At high
temperatures, where a range of j values can be regarded as having con-
stant ¢/kT, the entropy of a diatomic element has an additive contribu-
tion 2R In (2s, + 1) per mole, due to nuclear spin, and —R In 2 per
molecule to the symmetry. It was stated in section 6g that the entropy
of nuclear spin cancels in all reactions and will always be neglected.

Let us consider a molecule made up of two identical atoms, that is, atoms
which are both the same isotope of one element. The formula for the construc-
tion of the allowed wave functions for this molecule is first to label the nuclei
of the atoms as if they were distinguishable, and then to pick only those func-
tions which have the correct symmetry character with respect to exchange of
the two nuclei. If the number of elementary particles in the nucleus is even,
the mass number, or integral atomic weight, will be even, since the particles
composing the nucleus are protons and neutrons of unit mass, and in this case
the correct symmetry character is that the wave function be symmetric, that
is, be not altered by an exchange of the two nuclei. If the mass number is odd,
the number of elementary constituents of the nucleus is odd, and the correct
wave functions are antisymmetric, that is, they are altered by only a change of
sign if the two nuclei are exchanged.

In first approximation the wave function can be considered to be a product
of the functions of the coordinate of the center of mass, the vibrational func-
tion, the electronic function, the rotational function, and the nuclear spin func-
tion. The exact wave function may have a somewhat different form and slightly
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different energy from this simple product, but no perturbation which may have
been neglected could change its symmetry character, so that one is justified in
using this product to pick the symmetrical or antisymmetrical functions.

The coordinates of the center of mass of the molecule are unchanged by a
permutation of the two identical nuclei of identical masses, so the wave function
of these coordinates must also be unchanged, or completely symmetric, in such
an exchange. The vibrational coordinate £ is defined as the difference between
the distance apart of the nuclei and their equilibrium distance. This coordinate
is also unaffected by exchange of the nuclei. The vibrational wave function is
consequently symmetrical. The electronic wave function of the lowest level is
already antisymmetric in all permutations of electrons, but may be either sym-
metric or antisymmetric in exchange of the nuclei. The type of electronic
function that makes up the most stable level of almost all diatomic molecules is
symmetric with respect to nuclear exchanges. 1n order to fix the conditions let
us assume this to be so for the molecule we are considering.

Each of the three functions, translational, vibrational, and electronic, is
unaffected by the exchange of nuclei, so their product must also be unaffected
by, or symmetrical with respect to, this permutation. The symmetry char-
acter of the complete wave function will be that of the product of the rotational
and the nuclear spin functions. The produet of two symmetrical functions is
obviously symmetric, and that of an antisymmetric function with a symmetric
one is antisymmetric, whereas the product of two antisymmetric functions is
multiplied by (~1)2 and is unchanged, symmetric, by the permutation of the
nuclei.

The rotational function is a function of two angles, 6 and ¢, defined in sec-
tion 2b as the angles which the axis from one of the atoms to the other makes
with the z axis, and the angle which the projection of this axis on the ry plane
makes with the z axis. An exchange of the two atoms reverses the direction of
the axis and of the projection, changing the value of 8 to * — 8, and changing
dtogp+ .

It is now necessary to examine the solution of rotational wave equation to
ascertain what happens to the function if in every place' that 6 appears one
substitutes = — 0, and in every place that ¢ appears one substitutes ¢ + .
The wave function is & product of a function of 8 multiplied by one of ¢. The
0 function is a product of a power of sin 6 and a polynomial of cos 8 of order
j — m containing only odd, or only even, powers of cos 8, depending on whether
j —m is odd or even, respectively. The quantum number m is the number
which gives the orientation of the total angular momentum j along the z axis.
The function of ¢ is €™, The function sin 6 is unchanged by replacing 6
with 7 — 0; cos 6 changes sign in this operation.

The polynormial in cos 6 is multiplied by (—1)™ by the replacement of 8
with 7 — 0, and ¢™* is multiplied by ¢ = (—1)® upon replacing ¢ with
¢ + 7. The total wave function is multiplied by (=1)"®(=1)® = (—1)if
the nuclei are permuted; that is, functions of even j are symmetric, and those
of odd j are antisymmetric, with respect to the exchange of the nuclei.

The next task is to examine the symmetry characters of the nuclear spin
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functions. If the magnitude of the spin (in units h/2r) is 8., then each atom
may have any of 25, + 1 spin functions. Let us designate these functions by
a; or by «;, where ¢ and j run from 1 to 2s, + 1. If atom a has spin function
as, and b has the funetion a3, then the spin function of the molecule will be
@iattjs, or some linear combination of this with the permuted function aj.aa
(section 2k). The symmetric linear combination is as,ap + aj.as, and such
a combination will always be possible. The antisymmetric function is
aigap — ajgoip, but this function is zero if © = j.

There are §,(28, + 1) choices of i and j such that ¢ # j, and for each of
these one symmetric and one antisymmetric function can be constructed.
There are (2s. + 1) values of © = j which can be chosen, and for these only a
symmetric function can be constructed. Out of the total of (2s, + 1)? func-
tions, then, there can be constructed (s, + 1) (28, + 1) symmetric functions and
§.(2s, + 1) antisymmetric ones, with respcct to the permutation of the nuclei.

If one considers first the simple case that s, = 0, so that only one spin func-
tion exists for each atom, and consequently only one for the molecule, this
single function is symmetric. 1f the mass number of the nucleus is even the
total wave funciion must be symmetric, and with a symmetric electronic func-
tion only symmetric rotational functions will be allowed, that is, only even
values of j will be present. If the mass number is odd,* with symmetric elec-
tronic function, only odd j values will lead to the allowed antisymmetric total
wave function of the molecule. With antisymmetrical electronic function, the
situation would be reversed, and odd j’s would appear with even-mass-number,
and even j’s with odd-mass-number elements.

In either case only half of the rotational levels would be permitted, and we
have seen in section 7b that this results, at high temperatures, in an entropy
lower by — R In 2 per mole than if all j’s were allowed.

If the spin magnitude s, is not zero, both even and odd j levels will occur,
but with different degeneracies, that is, with different statistical weights. With
given electronic symmetry character, and given mass number, the odd j values
can occur only with a certain specified nuclear spin symmetry character, and
even j’s with the other. The degeneracy of one of the sets of j levels will be
increased by the factor (ss + 1)(2s, + 1), and the degeneracy of the levels of
the other sct by 8,(28, + 1).

On the average, then, out of range of many j levels the number of states is
£ (28, + 1)? fold greater than for a molecule with all j levels filled and without
nuclear spin. This will result in an entropy term, at high temperatures, of
2RIn (25, + 1) — RIn 2 permole. The first of these terms is the R In (2s, + 1)
per gram atom of element due to nuclear spin which is present in all compounds
and in the monatomic gas of the element. The second of the terms, —R In 2,
is the usual term due to the symmetry of the diatomic molecule with the two
identical atoms.

With nuclear spin, or without it, one always finds that the entropy
of a diatomic gas at high temperatures is —R In 2 smaller if the two

* Odd-mass-number nuclei never have zero spin.
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atoms composing a molecule are identical than if they are distinguish-
able.

At low temperatures transitions from symmetrical to antisymmetrical
spin states are extremely slow. This is not so much due to any resist-
ance which the nucleus offers to a force tending to reorient it, but rather
to the fact that it is too slippery to be attacked by a force. The only
force which tends to orient the spins is a magnetic one, and that acts
but weakly. Normal collisions with other molecules, except strongly
paramagnetic ones, have no effect.

At high temperatures the equilibrium is such that the ratio of the num-
ber of molecules with symmetrical spin functions to the number with
antisymmetrical functions is the ratio of the numbers of the functions,
namely, (s, + 1)/8,. As the temperature is lowered this ratio remains
constant if no catalyst for the transitions is present.

The gas then behaves like a mixture of two kinds of molecules with
fixed ratios of numbers, one kind of which exists only in odd, and the
other kind only in even, rotational levels.

In hydrogen this phenomenon is marked. The moment of inertia is
small, and the energy separation of the rotational levels is consequently
great. The boiling point of hydrogen is extremely low, so that the gas
can be obtained experimentally at very low temperatures. At the boil-
ing point the temperature is sufficiently low compared to the energy of
separation of the rotational levels that the rotation is almost completely
‘“frozen ” and that the specific heat is almost exactly that of a mona-
tomic gas.

The hydrogen nucleus has a spin of one-half. There exist three sym-
metric spin functions, (s, + 1)(2s, + 1), corresponding to the three
orientations of a total vector of unity made up of the two half-vectors
pointing in the same direction. Only one antisymmetric function exists,
5.(2s, + 1), for which the two nuclear spins are oppositely oriented with
a resultant of zero. The total number of functions is four, which is
just (2s, + 1)2. The symmetric functions form what is called ortho-
hydrogen (probably because the spins are parallel), and the antisym-
metric spins form what is called para-hydrogen.

At high temperatures one-fourth of the molecules exist as para-, and
three-fourths as ortho-hydrogen. If hydrogen is cooled in the absence
of a catalyst for the conversion, the relative numbers of the two kinds of
molecules remain constant.

The total wave function of hydrogen must be antisymmetric (change
sign) with respect to the exchange of nuclei, which consist of one ele-
mentary proton. The para-hydrogen, with antisymmetrical spin func-
tion, can exist only in the rotational levels of even j values which have



178 DIATOMIC GASES [Sec. 7f

symmetrical wave functions, in order that the product of the functions
shall be antisymmetric. The ortho-hydrogen is similarly limited to the
odd j’s.

The behavior of hydrogen will be that of a mixture of the two kinds of
molecules in the number ratio three to one, the more abundant ortho-
hydrogen having only odd j’s with the lowest level of j = 1, the less
abundant para molecules having only even j's. The lowest energy
which this inhibited system could attain is §N, times the energy of the
rotational level j = 1.

The degeneracy of the lowest level of ortho-hydrogen, j = 1, is three,
due to the nuclear spin states, multiplied by three for the 2j + 1 differ-
ent orientations of the j vector, or nine in all. The entropy of a mole of
ortho-hydrogen in the lowest internal level is R In 9 plus the entropy of a.
monatomic gas. The total entropy of a mole of * inhibited "’ hydrogen
at a temperature where the specific heat is that of a monatomic gas w111
be greater than that of a monatomic gas of the same molecular weight by
the entropy of three-fourths of a mole of ortho-hydrogen, $R In 9, plus
the entropy 4R In 4 + 4R In 4 of mixing of §$N, molecules of ortho gas
with N, molecules of para gas (section 6h). This adds up to R In
4+ 4RIn3.

If a catalyst which is capable either of dissociating the molecules on
its surface, and consequently permitting their recombination in the
lower energy form, or by its magnetic properties of reorienting the
nuclear spins, is introduced into the low-temperature gas, the inhibition
against transitions between ortho and para gas is removed. The mole-
cules will all tend to attain the single low-energy state in which the spins
are anti-parallel, and the rotational quantum number j is zero. This
para-hydrogen has zero energy and zero entropy at the absolute zero.



CHAPTER 8

POLYATOMIC GASES

(a) Introduction. (b) The Number of Degrees of Freedom. (c) Vibra-
tional Contributions. (d) Rotation. (¢) The Symmetry Number.

8a. Introduction

The purely statistical part of the problem of calculating the thermo-
dynamic functions of a gas composed of polyatomic molecules is not
difficult to solve. The mechanical problem of interpreting the spectral
data, Raman, infra-red, or ultra-violet, in such a way as to learn the
mechanical constitution of the molecule, however, is usually rather
difficult. Until this is solved for a particular molecule, the methods
of statistics cannot be applied to the gas.

It is usual to assume that the potential energy, which depends only
on the distances between the atoms, has a single minimum at one par-
ticular geometrical relative configuration of the individual atoms, and
that any displacement from this configuration results in an increase in
potential cnergy.

If two essentially different minima occur, as often happens with com-
plicated organic molecules, these two minima usually correspond to
different molecular species which are structural isomers. An illustra-
tion is encountered in butane, C¢H,o, which may exist as normal butane,
CH;3;CH,CH,CHg, or as isobutane, (CH3)3CH. These two configura-
tions of the atoms correspond to distinctly different chemical compounds,
and will be treated as such, so that configurations in the neighborhood
of one of the minima only would be considered in making calculations
for one of these compounds. If various minima exist, they may have
almost the same energy, as in normal and isobutane of the above ex-
ample, or they may have entirely different energies. If the two minima
correspond to two optical antipodes, which differ only in the sense that
the right and left hand differ, the energies of the two minima are iden-
tical.

In any event, the chemical problem of finding the properties of a
system composed of one structural isomer alone finds its statistical
analogy in determining the properties of a system which is inhibited to
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that part of the phase space, or to those quantum states, corresponding
to the neighborhood of one of the potential minima alone.

However, the total energy of the system may be so high that such
transitions do actually occur at an appreciable rate. One may then use
the method of Chapter 9 for an equilibrium mixture of gases capable
of undergoing a chemical reaction.

A third condition is sometimes met, namely, one in which the height
of the potential hill separating the minima is low compared with the
average energy of the molecules. Then the quantum states of the
molecules, and indeed those which are populated by the majority of
the molecules under the conditions considered, cannot be said to belong

to either one of the minima alone. The method of treating the equilib-

rium mixture of two isomers as a reaction equilibrium, in which the free
energies of the isomers can be individually calculated, implies that all

those quantum states of the molecules which are thickly populated can :

be said to belong to one and one only of the various isomers. Whether
this is true or not will usually depend on the total energy, or tempera-
ture, of the system. However, it may well happen that even the lowest
energy level of the molecule, which has the half-quantum of vibrational
energy, may have a higher energy than that necessary to surmount the
potential hill between two neighboring minima.

In such a case it is at once obvious that the two structural isomers
could never be separated chemically. Many examples are known in
which the separation of conceivable isomers has never succeeded, al-
though obviously the experiments have never been conducted at the
absolute zero of temperature. For instance, the organic chemist says
that there is free rotation around the carbon-carbon bond in the sub-
stituted ethanes, XYZC—CXYZ. There are, presumably, three minima
in such a compound, differing by a 120-degree mutual rotation of the
two —CXYZ groups about the axis of the C—C bond. The evidence
of organic chemistry indicates that even below room temperature there
are rapid transitions between these minima. It is then doubtful that
the quantum states of the molecule which are populated at room tem-
perature can all be said to belong definitely to one or the other of these
three minima. One must expect that the determination of the energies
of the quantum levels of such a molecule will be a problem of con-
siderable complexity.

Another distinction between different isomers and isomers which are
to be treated as identical must be clearly understood. If the four
tetrahedral hydrogens of the methane molecule, CHy, were different
and distinguishable, two different minima would be found, as evidenced
by the existence of two optical antipodes of CCIBrIH, in which three

- me—
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of the hydrogens have been replaced by different atoms. These two
minima in CH,, however, are indistinguishable because of the identity
of the hydrogen atoms.

In evaluating the classical phase space available to a molecule of
methane below a certain energy one must double the phase space avail-
able in the neighborhood of one of these minima. This must, however,
be divided by 4 | = 24, the factorial of the number of identical atoms.
The total phase space available to the molecule with a certain energy
must then be calculated by dividing that in the neighborhood of one
of the minima by 12. This 12 is the symmetry number, v, of the
methane molecule, defined as the number of ways in which the molecule
can be oriented without changing its potential energy in the orientation
process, that is, by pure rotation, so as to obtain identical appearing
configurations.

Stated differently, the classical phase space available to a molecule
must be divided by the product of the factorials of all the numbers of
identical atoms. Each one of these Iln; ! exchanges of atoms would

lead to a different configuration of the molecule if all the atoms were
numbered. We must, therefore, count the phase space available to one
of these configurations only. If v of these configurations can be con-
verted into each other by rotation alone, then integration over all
orientation angles calculates the phase space of 7 configurations and
must be divided by v before use in the thermodynamic equations.

We shall, then, discuss first the methods of calculating the thermo-
dynamic properties of a molecule in which it is assumed that all com-
plications are absent, and later discuss in more detail the corrections
due to symmetry in the molecule, and the cases in which the simplifying
assumptions which have been made are unjustified.

8b. The Number of Degrees of Freedom

The number of degrees of freedom of a polyatomic molecule has
already been discussed in section 6j. Most polyatomic molecules are
stable only at relatively low temperatures (below 1000°K.), and for-
tunately the greater number of those which are chemically important
have a single lowest electronic state with no excited level of energy so
low that it is apprecigbly excited at these temperatures.

The configuration and motion of the molecule can then be described
by the 3n Cartesian coordinates, and 3n conjugated momenta of the
n atoms composing the molecule. The molecule has 3n degrees of
freedom. One may transform to new coordinates, which must, how-
ever, be 3n in number.

Three of the new coordinates will naturally be chosen as the Cartesian
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coordinates of the center of mass of the molecule, defined by
Z_m.w.-

8. 1) X=;m,-'

ete.,

where z; is the z coordinate, and m; the mass, of the ith atom. The
wave function of the coordinstes of the center of mass will be that of a
free particle with mass equal to the sum of the masses of the atoms.
These coordinates will then contribute additive terms to the thermo-
dynamic functions of fhe gas equal to those of a monatomic gas of this
mass. i

Of the 3n — 3 internal coordinates either two or three angles can be\
chosen which determine the orientation of the rigid frame of the atoms)
with their mutual distances fixed in the position of minimum potential :
energy. The potential energy does not depend on these angles. Two
angles will be sufficient if this minimum corresponds to a linear molecule
with all the atoms in a straight line. Three angles will be needed if the
potential minimum corresponds to a non-linear figure.

If the molecule is linear, as the diatomic molecule, one can assume as
a first approximation that the single moment of inertia is constant, and
the variables in the Hamiltonian will be separable. One obtains an
additive contribution from the rotational quantum number j to the
energy of each quantum state, and corresponding additive contributions
to the thermodynamic functions. These will be the same as the rota-
tional contributions to a gas of diatomic molecules with the same
value of the moment of inertia I. The moment of inertia of the poly-
atomic linear molecule is given by

i=n
(8. 2) I= 21711,1?,
i=

where z; is the distance of the ith atom of mass m; from the center of
mass, so that Zm.-x.- = 0.

L]

If the molecule is non-linear, one can assume, as a first approximation
at least, that the moments of inertia will be fixed as those corresponding
to the position of the minimum of potential energy. The Hamiltonian
will again be separable, and the three angles will make additive con-
tributions to the energies of the quantum levels of the molecule and to the
thermodynamic properties of the gas. These calculations will be carried
out in section 8d.

The potential energy of the molecule depends only on the remaining
coordinates of the molecule which are called the vibrational coordinates.
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8c. Vibrational Contributions

There remain f, = 3n — 6 or 3n — 5 degrees of freedom in non-linear
and linear molecules, respectively. That is, there are f, coordinates,
gi, and the potential energy can be expected to depend, at least to some
extent, on all of them. These coordinates can be so chosen that zero
value of all of them corresponds to the position of minimum potential,
which will be assigned the energy zero. These coordinates then rep-
resent displacements of the figure from the position of equilibrium.

1f the total potential energy U of the molecule is developed as a power
series in the coordinates ¢;, the condition that U = 0 when all the ¢'s
are zero requires that the constant term in the development be absent.
The condition that this energy be a minimum, i.e., 3U/d¢; = 0 for all
gi's when all g’s are zero, requires that the power series begin with the
quadratic terms, that is, that all linear terms are zero. The cubic and
higher-order terms will be smaller than the quadratic at sufficiently
small displacements from the equilibrium position, at small values of the
gs's. As a first approximation they may be neglected, so that the poten-
tial can be written as a sum of terms, each of which is quadratic in the
g’s, but among which there will, in general, occur cross-product terms
of the type gig;.

It is a mathematical theorem that, whatever the values of the force
constants (the coefficients of the various terms) and whatever the values
of the reduced masses (one-half the inverse of the coefficients of the
terms p? in the kinetic energy), one can always transform to new
“ normal coordinates "’ gx such that, with their conjugated momenta p,
the Hamiltonian has the form

l'!ua)‘qz A=f, 1 2
8. 3) Hu.( ) = 51—2— A+ E.l R

In this equation the cssential simplification which has been reached is
the elimination of the second-order cross-product terms of the type g.g;
in the potential energy (without the introduction of cross products p.p;
in the kinetic energy). The a\’s are the generalized force constants, and
the u’s the generalized reduced masses. (By a linear change of scale
the coordivates are often so determined that the reduced masses are
all unity.)

The third-order terms in the potential, if included in the above equa-
tion, would, unfortunately, contain cross products. Their neglect is
justified only if they are negligible compared with the quadratic terms
for such displacements ¢\ that the quadratic terms (a:/2)g are of the
order of magnitude of k7.

If the third-order terms are neglected, the Hamiltonian is separable,
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that is, it consists of a sum of terms each depending on one only of the
Ju coordinates with its conjugated momentum. The wave function is
a product, and the energies of the quantum states a sum of terms, each
depending on the one quantum number v, associated with the normal
coordinate ¢». The additive part of the Hamiltonian for each coor-
dinate with its conjugated momentum is exactly the Hamiltonian of the
harmonic oscillator with the force constant a) and the mass u). The
solution in classical, or in quantum mechanics consists then of inde-
pendent harmonic vibrations of the system along all of the normal
coordinates, each with'its own frequency » = (1/2x)(ar/m)*2. The
contribution of each coordinate to the energy of a quantum state of the
molecule will be, as for the vibration of a diatomic molecule, ¢ =
(Vs + 3)hn. \

The partition function @ is then a product, and In Q a sum, of f,:
terms, each of the same type as the @, and In @, calculated for the '
diatomic molecule in section 7¢, in which the frequency »\, must be used
in the term Q, or In Q.

The analysis of the motion of the molecule as harmonic oscillation
along the normal coordinates is essentially a formal one. It has no more,
but also no less, physical significance than the arbitrary analysis of a
wave as & Fourier sum or integral of sine and cosine waves. In the
case of white light the spectrograph makes a physical analysis of the
wave which is exactly that of the formal mathematical analysis into a
Fourier integral. So also certain experiments analyze the motion of a
large-scale model of a molecule, which obeys the classical laws, into
harmonic vibration along the normal coordinates.

If such a model is distorted from its equilibrium shape, and then
released, the rather complicated motion which ensues may be analyzed
in the formal manner described as harmonic vibration along the normal
coordinates. If the original displacement were such that only one, gy,
of the normal coordinates ¢, were different from zero, and if the cubic
interaction terms were really zero, the subsequent motion would actually
be true harmonic vibration along this coordinate, g\, with the fre-
quency »\, all the other coordinates remaining zero during the motion.

If such a model is shaken with a variable frequency, say by an electric
motor, the amplitude of the motion of the molecule will be small at most
frequencies. If, however, the frequency of the shaking becomes that of
one of the normal coordinates, the amplitude will increase markedly
and the molecule will vibrate along that coordinate.*

In Fig. 8.1, the directions of the motion given by displacements along

* C. F. Kettering, L. W. Shutts, and D. H. Andrews, Phys. Rev., 36, 531 (1030);
D. E. Teets and D. H. Andrews, J. Chem. Phys., 8, 175 (1935).
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the normal coordinates are shown for some of the simpler types of mole-
cules. The exact angles of the displacements will depend on the
numerical values of the forces and of the masses, but certain of the
characteristics of the motion can be deduced from considerations of the
symmetry of the molecule alone. These considerations are of prime

The types of motion associated with the normal vibrational coordinates of
some molecules.
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importance in the case of such a relatively complicated, but extremely
svmmetrical, molecule as benzene, C¢Hg.} The most useful tool for
these considerations is the mathematical theory of groups.

In general if the molecule has some degree of symmetry, not all the
Ju frequencies, v, will have different numerical values, but there may be
several of the normal coordinates for which the frequencies will be
necessarily identical. In this case it is also true that the choice of the
normal coordinates will not be unique, since any linear combination of
two coordinates with the same frequency will also be a normal coor-
dinate of the system. However, the number of normal coordinates,
and therefore the number of terms In @, which enter into the thermo-
dynamic functions, is uniquely fixed.

* The order of frequencies depends on the masses and binding. That of the upper

two is, for instance, reversed in COs.
t E. B. Wilson, Jr., Phys. Rev., 46, 706 (1934).
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In such a case the coordinates of identical frequencies are said to be
degenerate, and two or more In Q) terms enter into the thermodynamic
expressions with the same frequencies.

The numerical values of the frequencies are always obtained from an
analysis of the spectrum of the molecule. They may be observed in the
infra-red, the Raman, or the visible or ultra-violet spectrum of the gas.

If the molecule is completely unsymmetrical all f,, frequencies will be
essentially different, although, of course, one cannot completely rule
out the possibility that by pure chance two of them may be very close
to each other in value. ln this casec of a completely unsymmetrical
molecule all f, frequencies will be, in principle at least, observable in
any one of the above spectra.

If all f, different frequencies are actually observed, no mechanical
analysis of the motion of the molecule is necessary. The contribution
of the f, degrees of freedom to the thermodynamic properties of the gas
will be given by f, terms of the same type as the contribution due to
vibration in a diatomic molecule, each depending on one frequency alone.

In a symmetrical molecule, however, certain difficulties arc encoun-
tered. The frequencies due to certain of the normal coordinates will be
absent in one, or even conccivably in all three, of the above types of
spectra. For instance, the first type of motion for the symmetrical
linear triatomic molecule CO; shown in Fig. 8. 1 is one in which the
oxygens always move in opposite directions, and the carbon remains
fixed. For this motion there is no dipole displacement of the electric
charge, and the frequency associated with this normal coordinate will
be absent, or at least very weak, in the infra-red spectrum of the gas.

Even if all the different frequencies are actually observed their total
number will often be less than f, owing to the essential degeneracies
present in a molecule of the given symmetry. One must then ascertain
which of the observed frequencies are to be used twice or more often in
the thermodynamic terms. In order to do this an analysis of the
mechanical motions of the molecule is necessary. For somc of the
simpler molecules this may be done almost intuitively; for others it is
extremely complicated.

For CO; a few qualitative considerations are sufficient to enable one
to place the observed frequencies uniquely. The four modes of motion
of the four normal coordinates can be seen intuitively to be those sketched
in Fig. 8. 1. The first motion shown will not occur in the infra-red but
will be present in the Raman spectrum of the molecule. This type of
motion, in which the oxygen atoms move oppositely, will have a fre-
quency between the other two (about 7.5u). The second type of
motion in which the oxygens move together should be observed in the
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infra-red, since in this type of motion the center of gravity of the neg-
ative charge, associated with the oxygen atoms, moves with respect
to the center of gravity of the positive charge. This frequency will be
missing in the Raman spectrum. This type of motion has the highest
frequency (about 4.7u). The third type of motion is degenerate, and
it is this frequency which must be used twice in the thermodynamic
terms. This type of motion is a bending of the molecule, and will be
infra-red active, but Raman inactive. However, the forces resisting
bending in a molecule are much weaker than those resisting changes
of distance between the atoms, so that this frequency would be expected
to be decidedly lower in value than either of the others (about 15u).

One expects, then, for CO,, to find two strong infra-red frequencies
reported, one of which should be very considerably lower than the other.
In the Raman spectrum one expects only one strong line, the frequency
of which should lie between those of the two infra-red-active vibra-
tions. The lower of the two infra-red-active frequencies is the de-
generate one.

The actual situation in CO; is complicated by the occurrence of what
is called an accidental degeneracy. The frequency of the bending
motion is almost exactly half of that of the frequency of the Raman
active vibration, so that the two quantum levels, one in which there are
two quanta in the bending degrees of freedom and the one in which
there is one quantum in the stretching degree of freedom, have the same
energy. These two levels combine, that is, they form two new levels,
one of lower, and one of higher energy, each of which has some of the
mechanical properties of both of the original levels.* Consequently,
two Raman lines are observed, instead of the single line which we had
been led to expect. The regular equal spacing of the vibrational levels
in the energy scale is also distorted, and so for CO, one cannot expect
that the thermodynamic properties would be correctly calculated by
the simple equations which have been derived here.

For the CO; molecules, as for most molecules consisting of only three
or four atoms, simple qualitative considerations are sufficient to enable
one to predict the type of spectral frequencies which will be found and
to interpret any anomalies which occur. For more complicated mole-
cules, such as benzene, a careful mathematical analysis of the mechan-
ical problem is necessary before the observed frequencies can be utilized
for statistical calculations.

The usual method of attack involves first a group theoretical analysis
of the normal coordinates, making use of the symmetry properties of the
molecule. The number of different frequencies is determined in this

* Enrico Fermi, Z. Physik, T1, 250 (1931).
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manner, the degeneracy of each type of motion is found, and for each
frequency it is determined if it will be infra-red or Raman active. By
qualitative considerations, an attempt is made to order the different
modes of motion in order of the numerical values of their frequencies, and
thus to associate the observed infra-red and Raman lines with the
different normal coordinates.

If, as in benzene, some of the frequencies are completely absent in
both the Raman and the infra-red spectra, and are also not known from
the electronic transition spectrum, a further numerical analysis is
necessary. The force constants for the different normal coordinates
may be expressed as functions of the forces between the individual .
atoms. By neglecting the forces between distant atoms, and making °
ample use of the symmetry of the molecule, the number of different
force functions between the atoms may be reduced to equal or less than
the number of observed frequencies. One has then, in principle, enough
observed data to determine all the unknown forces, and so to calculate
numerical values for the unobserved frequencies. Needless to say, the
operations are rather difficult.*

In order to deduce that the contribution of the f, oscillatory coor-
dinates to the thermodynamic function, X, of the gas was to add f,, terms
of the type Xy, calculated in section 7¢c, it was necessary to assume that
the cubic terms properly present in equation (3) were negligible. It is
obvious that for sufficiently small displacements ¢, this is legitimate.
However, the actual displacements at any temperature are approximately
given by the relation that the quadratic term has the value kT, so that
the temperature range of validity can be estimated by these conditions.
It is not always true that the approximation is justified even at room
temperature.

Two rather different types of deviations may occur.

One of these is that the cubic and higher-order terms for one of the
normal coordinates alone must be considered, but the cross-product
terms in which the coordinate is multiplied by others may be neglected.
In this type of deviation the Hamiltonian is still separable, but the
energy of a quantum level due to the coordinate g, is not now given by
the simple equation (v, + )hv,, even for energies of about k7' or less,
but by some more complicated expression. The additive contribution
of this coordinate to In @ may still be calculated as one term, inde-
pendently of the others, but will not be given by the form of In Q, due
to simple harmonic vibration.

The problem is again essentially mechanical, and not statistical. If
the actual quantum levels due to this coordinate can be found in the

* R. C. Lord, Jr., J. Phys. Chem., 41, 149 (1937).
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spectra then numerical summation of ¢™*/*7 will yield the desired value
of Q,. If, instead, the actual form of the potential were known, or
could be guessed with reasonable certainty, it would always be possible
to solve for the quantum levels, if necessary, by numerical integration
of the one-dimensional wave equation, and to find @, by direct sum-
mation.

A problem of this sort which has not been completely solved arises
in ethane, H;C—CHj. One of the normal coordinates of this molecule
corresponds to equal and opposite rotation of the two CHj groups about
the axis of the C—Cbond. Now two extreme cases are conceivable, and
it is probable that the true state of affairs lies between them. One might
assume that the three symmetrical positions of minimum potential
energy for this coordinate are separated by such low potential hills that
it would be possible to treat the potential energy as though it were
independent of the value of this coordinate. The quantum-mechanical
solution is then easy,* and leads to the energy levels

r?h?
(8. 4) « = 6x2C"
where r is an integral quantum number, and C is the moment of inertia
of one of the CHz groups about the C—C axis of the molecule.

The other extreme would be to assume that the minima along this
coordinate are so steep that one can use the quadratic term in the poten-
tial expression alone, and assume that the rotational vibrational ampli-
tude is never great enough to leave the region near one of the minima
where this is allowable. This is, of course, justifiable only if the poten-
tial hills separating the minima are much higher than the value of kT.
If this is assumed ¢, = (r + 1)hv,.

One might assume that a decent approximation of the potential for
all values of the coordinate g, would be obtained by the equation

(8. 5) u(g,) = 3A(1 + cos 3g,).

At g, equal to zero, 2x/3, and 4x/3, the cosine has the value unity and
the potential has the maximum value of 4, the top of the hill between
the minima. At ¢, = x/3, =, and 5x/3, the potential is zero; these
are the positions of the three minima.

The quantum levels can be calculated for this type of potential, and
their values are obtained as a function of the unknown A.t Motion

* J. E. Mayer, S. Brunauer, and M. Goeppert Mayer, J. Am. Chem. Soc., 66, 37
(1933).
1 E. Teller and K. Weigert, Nachr. Ges. Wiss. Gottingen, 218 (1933).



190 POLYATOMIC GASES [Ssc. 8

along this coordinate is neither infra,-r.ec,ll nor Ra.man active, 5o th,
calculated levels cannot be compared ?nt spectroscopic frequencies jj,
order to determine A. The only available method to determine this
parameter is to compare the thermodynamic properties of t.be &as with
the caleulated values, assuming that all the other frequenczes are cor-
rectly determined. This method of comparison is open to several
uncertainties.

The second type of deviation from the assumption of f, simple har-
monic oscillational degrees of freedom is one in which the cross-product
cubic terms in the potential are appreciable at energies corresponding to
the temperature for which the calculations are made. Under these
conditions the situation becomes so complicated mechanically that it is
doubtful that such a problem will be successfully solved in the near
future.

We have already encountered, in the discussion of the CO; molecule,
an example of the accidental degeneracy of two levels causing difficulty
in the interpretation of the spectra. The magnitude of the energy
splitting which arises when two levels of the molecule approach each
other in energy, due to such an accidental numerical relationship in the
values of the different frequencies, is dependent on the magnitude of
the cubic and higher-order terms containing cross products between
the g\’s. If the coefficients of these terms are identically zero the split-
ting will be zero.

Another difficulty which somctimes reduces the accuracy of the
values of In @ obtained by the method outlined here is the stretching of
the molecule in the higher vibrational and rotational levels. This
results in a dependence of the moment of inertia on the angular momen-
tum and on the quantum numbers of vibration. This effect was
specifically calculated for diatomic gases in section 7d. It is impossible
to make as general a calculation for all types of polyatomic molecules,
and since the rotational spectrum is not usually analyzed, the constants
for such an empirical formula as (7. 24) are unknown. For any par-
ticular molecule it is always possible to ascertain the extent of the
stretching if all the frequencies are known,* but this is usually a
moderately involved mechanical calculation.

1t is to be expected that for such rigid molecules as CHy, or CgHg, this
effect of lack of constancy of the moments of inertia would not be very
important. For propane, CH3CH,;CHj, in which the carbons are not
in a straight line, the effect may be very appreciable at room tempera-
ture.

It is seen that one is usually restricted to making much less accurate

* E. B. Wilson, Jr., J. Chem. Phys., 4, 526 (1936).
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calculations for polyatomic than for diatomic molecules. Nevertheless,
the methods outlined in this ( i:apter are capable of giving rather good
results for many molecules.

8d. Rotation

The rotational contributior. to the partition function of a linear poly-
atomic molecule is the same as that for a diatomic molecule with the
same moment of inertia. The moment of inertia of the polyatomic
molecule must be calculated by equation (2).

The rotational spectra even of most linear polyatomic molecules have
not been analyzed. The moment of inertia is consequently not known
from the spectral data, and must be calculated from equation (2) using
distances obtained from electron diffraction, X-ray, or semi-empirical
information. The distance between definite atomic pairs with a given
type of chemical binding appears to he remarkably constant and inde-
pendent of the particular molecule in which the pair occurs.

For non-linear polyatomic molecules we must calculate the partition
function due to the three degrees of freedom of rotation. The general
quantum-mechanical solution for the rotational coordinates of a rigid
body cannot be made, but, since the moments of inertia are almost
invariably large, the quantum levels are closely spaced compared with
the value of kT at the boiling point of the gas, and the classical approxi-
mation may be safely used.

The moment of inertia, A, of a body composed of n mass points of
masses m,, - - -, m;, - - -, M,, about any axis in space is given by the
equation

i=n
(8. 6) .Zlm,-r? = A,

i=
where r; is the perpendicular distance of the mass point from the axis.
If the axis passes through the center of mass of the molecule it follows
that

(8. 7) z m,?,- =0

if 7 ; is considered a vector.

If the magnitudes of the moments of inertia of any rigid body about
the various axes passing through one point in space are plotted along the
directions of the axes, they fall on the surface of an ellipsoid with its
center at the origin of the plot. This means that three perpendicular
axes can be found such that the moment of inertia about one of them
is a maximum (is larger or equal to the moment about any other axis),
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the moment ubout the second is a minimum, whereas the moment
about the third axis is in a saddle point, so that it is smaller than the
moment of any other axis in the plane common to it and the first axis,
and greater than that of any other axis in the plane common to it and
the second axis.

These three moments of inertia, about the center of mass of a mole-
cule, are called its three principal moments of inertia, 4, B, C, and the
three axes are referred to as the principal axes of the molecule.

If the three principal moments are all equal, as in methane, the mole-
cule is called a spherical top, and, of course, the moments about all axes
through the center of mass then have the same value. If two moments
are equal, but the third has a different value, the molecule is said to be
a symmetrical top, and then all axes in the plane of the two axes with
equal moments have the same moments of inertia. Benzene, ethane,
and chloroform molecules are symmetrical tops.

If the position of the ith atom in Cartesian coordinates is z;, y;, 2;, then
Smup f=n fm=n

) mitt-‘zlmdli= zlm¢;=0,
- -

t=1

if the center of mass is taken as the origin. The moments of inertia about
the z, y, and z axes are, respectively,

t=n f=n f=n

Ie= ‘}'.‘.l miz +yi), Iy = 21 mi(@ + 2d), I, = 2.1 mi(zi + yi),
- l'- L L

and products of inertia I,s, I,s, Iy, may be defined as
[Ty

I, = 21 myzi, ete.
=

The three equations

a(lyy — 1) ~ ﬁlzu - 71,, =0

—aly+ By — 1) — vl =

—aly = Bly+ v(lss—n) =0
with 4+ =1
can be solved for three different values of n which are the three principal moments
of inertia. The corresponding values of a, B, oy are the direction cosines of the
three principal axes. It is seen that if all the products of inertia are zero the
z, y, and z axes are the principal axes and their moments are the principal
moments of inertia of the molecule.

The three Eulerian angles, 8, ¢, and y are used to describe the orien-

tation of a rigid body in space.
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If z, y, and z are taken as the three Cartesian coordinates fixed in space, and
£, m, ¢ as the three principal (perpendicular) axes of the body, then @ is the angle
between the body axis { and the space axis z. The line in the zy plane perpen-
dicular to the plane common to { and z is called the nodal line. The angle
between this nodal line and the z axisis ¢. Thus 6 and ¢ completely determine
the direction of the ¢ axis in space. The angle between the nodal line and the
¢ axis in the body is Y. This, then, completely defines the orientation of the
whole body with fixed center of gravity.

The angle § may vary between 0 and r; the two angles ¢ and ¢ take
all values from 0 to 2.

The Hamiltonian of the rigid body with fixed center of gravity is just
the kinetic energy, written as a function of these angles and their con-
jugated momenta, namely,

sin? ¢ | cos ¥

2
(8. 8) H= 24 11» ~ Sin 6 sin w(p. - cosﬂm)}

cos? ¢ sin ¥ _ }2 1 4
+ 2B {p'+sinOcos¢(p' cos 67;) +2Cp""

This can be transformed into an expression which will be found more
convenient for future operations,
8. 9) H 1 (sin'ﬂb cos? ¢

T = s\

kT  2kT

sin ¢ cos ¢ 2
[pa + (B A) (sm 4: cos? 1{,) (P — cos ﬂp,)}
B
1

1
t kT ABsin?6 (sin"' 14 + cos® IP) (Pe — 08 0py)* + orms
A B
The partition function due to the rotation of this body is

(8. 10)

40 At At
O = [ f f f' f f L o-Hoant4p, dp, dp, db dé dy.
-0 Y-

The substitution of (9) in (10) appears to lead to a rather formidable
integral, but direct integration in the order ps, Py, Py actually offers no
difficulties. It is necessary to remember that

[ e ()

2k1'C P
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Integration over py leads to the factor

ya [sin? ¢ | cos? 4,]—1/2
(2ekT) {——-A 4+ 2

Subsequent integration over p, yields

- sin? v cos2 ¢}1I2
(2xkTAB) smo{ =+ =L,

as a factor, which cancels part of that obtained in the first integration.
Integration over p, yields the factor

(2xkTC) 2.

Integration of sin 6 df from O to = gives 2, and the other angles give each a
factor 2=, so that

(8. 11) Qpor = /2 (81-2Ak’1')112 (812Bk7’)“2 (Sr"‘Ck uz.

If, in conformity with the notation adopted in section 7b for the dia-
tomic molecule, we define

”"° h2
(8. 12) 04 = Sm: o = m. ete.,
then
(8. 13) In Qg = = In——.
2  o40poc

Using equations (6. 25") to (6. 29") for the contribution of these three
degrees of rotational freedom to the thermodynamic properties of the
gas, one obtains

(8. 14) Fr=—RTh Q= RT% In u?cc,

d 3 1 *

040B0C.

8. 18) Ep= gm',

(8. 17) Cr =R

NIiw
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8e. The Symmetry Number

Just as in symmetrical diatomic molecules consisting of two identical
atoms, for which only half of the rotational levels occur, symmetrical
polyatomic molecules do not have as many allowed rotational levels as
unsymmetrical ones.

The symmetry number v of a molecule is defined as the number of
different values of the rotational coordinates which all correspond to one
orientation of the molecule, remembering that the identical atoms are
indistinguishable. Thus the symmetry number of a diatomic molecule
of two identical atoms is two. The molecule CO,, which is linear,
0=C=0, has also a symmetry number two. The symmetry number
of tetrahedral methane is twelve, since any of the four corners of a tetra-
hedron may be placed upright without altering its apparent orientation,
and with cach of the four corners up the three positions differing by a
rotation of 2x/3 about the vertical axis look identical. The symmetry
number of benzene, CgHg, is also twelve, if, as is presumed, the molecule
is a regular hexagon with all the atoms lying in one plane. With either
side of the plane facing upwards there are six positions differing by
rotation of integrals of /3 about the vertical axis, all of which are
identical if the atoms are unnumbered.

If the molecule contains 7, identical atoms of kind 1, - - - , n; of kind 1,
then I'_In,- ! permutations of these atoms are possible. If the atoms were

all distinguishable in principle these I‘In,-! permutations would all lead
to different configurations of the molecule, but only (l;ln.- 1)/ of these

would be different molecules, since each of the configurations could be
transformed into vy other ones by a rotation of the molecule alone. The
number of distinct minima, A, in the potential energy diagram of such a
molecule, all having identical energies, will be

A=_ll_,ln,-!,

in which v is the symmetry number.

For example, in methane there are four identical hydrogen atoms, or
tweuty-four different permutations, of which twelve can be obtained by
rotation. The two esséntially different configurations show up as the
two optical isomers if three of the hydrogens are replaced by different
groups.

The classical phase space of such a molecule must be divided by
I;;[nz'! (and by %) in order to obtain agreement with the number of
quantum states in a certain energy interval. However, if, as is usually
done, the phase space in the neighborhood of one of the A minima alone
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is calculated, then this must be multiplied by A before division by
l;[n,- !, which, from the equation for A, can be seen to result in a division

by the symmetry number y. As in the case of symmetrical diatomic
molecules the classical phase space of the molecule (in the neighborhood
of one potential minimum) must be divided by the symmetry number,
v, in order to calculate the correct thermodynamic properties.

The quantum-mechanical problem has the corresponding solution.
Out of a range containing a large number of rotational levels found in
the mathematical solution, only the fraction 1/v will have the symmetry
character with respect to permutations of the identical atoms which is
necessary in order to satisfy the conditions imposed by nature on the '
complete wave function of the molecule. The actual form of the :
symmetry which will be necessary in the rotational eigenfunctions,
whether symmetrical, antisymmetrical, or even some more complicated
character, and the actual rotational states which are allowed, will
depend on many factors such as the mutual orientation of the nuclear
spins, the mass number of the nuclei, and the vibrational and electronic
level. However, at high temperatures (and for a polyatomic molecule
all reasonable temperatures may be regarded as high) the values of the
thermodynamic properties depend only on the average number of states
allowed. The effect of symmetry in the molecule is always to add
— R In v per mole to the entropy, and RT In v per mole to the free energy.
The nuclear spin entropy is, as always at high temperatures, just
Rln (2s, + 1) per gram atom of element with spin s,,.

With certain molecules one appears to get into some difficulties with
the symmetry number, since two differing viewpoints are possible.
Closer inspection shows the difficultics to be easily resolvable, since
both viewpoints, if developed systematically, lead to the same result.
It may, however, be instructive to analyze one such molecule.

It has already been stated in section 8a that it is questionable whether,
for the molecule ethane, H3C—CHj, one should regard the opposite
mutual rotation of the CHj; groups about the axis of the C—C bond as
completely inhibited or as partially free. If rotation about this bond is
completely prevented, so that one calculates the distribution of the mole-
cules in the phase space, or quantum states, in the neighborhood of one
of the three symmetrical potential minima only, the symmetry number
arrived at is six. This is seen by considering that rotation of the mole-
cule as a whole about the C—C axis leads to three corresponding posi-
tions, and rotation by = about an axis normal to the C—C bond leads to
another set of three equivalent positions.

If independent rotation of the methyl groups around the C—C axis is
assumed the symmetry number is threefold greater, or y = 18.
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There are six identical hydrogen atoms and two carbon atoms in the
molecule, so that I‘_Im! =6!2! = 1440. The number of different

isomers, A (that is, different if the atoms were distinguishable), assumed in
hindered oscillation is 1440/6 = 240, and in free rotation, one-third of
this number, or 80. For free rotation one can count the 80 isomers as
due to the (6 1/313!) = 20 different ways that onc can associate three
out of six numbered hydrogen atoms with each of the two numbered
carbon atoms, multiplied by 4 because around each carbon the order of
the hydrogens in a cycle may take two different values. With hindered
mutual oscillation about the C—C bond there are three times as many
isomers.

That is, for ethane, one may either choose ¥ = 18, A = 80, or v = 6,
A = 240, depending on whether one counts, respectively, the total phase
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Fia. 8. 2. Potential energy and quantum state diagram for the internal rotational
degree of freedom in ethane.

space with a given energy in all three of the minima positions, or one-
third of this space in the neighborhood of only one of these positions.
The corrected phase space, after division by the symmetry number, is
the same in either case.

In Fig. 8. 2 the potential energy is plotted as a function of g,, the
angle between the projections of two specifically chosen hydrogen atoms,
one on each carbon atom, on a plane normal to the C—C axis. The
equation used for the potential is that already given in equation (5).
With energy ranges below the hills separating the three minima it is
clear that in counting the classical phase volume due to the coordinate
it is immaterial whether one takes the coordinate range at one of the
minima and divides by the symmetry number 6, or whether one adds all
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three equal coordinate ranges and divides by 18. At energies higher
than that of the hills it is obviously more natural to include the whole
coordinate range and divide by the symmetry number 18 corresponding
to free rotation.

The quantum-mechanical solution is somewhat less trivial. The
levels which are far below the energy of the tops of the hills show each
three different states, and in the zeroth approximation each of these
states corresponds to the molecule existing in one of the three different
minima. However, a more exact solution of the wave equation is
obtained by using certain linear combinations of the three states that |
correspond to the different minima. The three linear combinations will
have slightly differing energies, the amount of the splitting depending on |
the height of the hills between the minima and the moment of inertia of
the CH; groups. Even if the energy splitting were negligible, it is
statistically important that there are three states to each level; the
levels are triply degenerate.

The complete wave equation for the molecule, which must be anti-
symmetric with respect to permutations of the identical hydrogen
nuclei and symmetric with respect to exchange of the two carbon nuclei,
will be a product of a function of this coordinate ¢, with the functions
of the other coordinates, the electronic functions, and the nuclear spin
function. In order to make the total function antisymmetric it will be
necessary to use particular linear combinations of the functions of the
coordinate g, which correspond to the minima, namely, those which
have what is called a definite symmetry character with respect to per-
mutations. Each one of the three linear combinations of one level, if
multiplied by a definite vibrational, spin, and electronic function, can
only be multiplied by 1/18 of the various rotational functions to give
a completely antisymmetric total wave function.

If the moment of inertia is large, and the hills between the minima
high, so that the lower levels of this coordinate are negligibly split in
energy, it is then immaterial whether one regards each level as being
threefold degenerate, and each state of the level combining with one-
eighteenth of all the rotational states, or whether one forgets the degen-
eracy and says that each level combines with one-sixth of all the rota-
tional states. The higher levels of this coordinate will certainly be
considerably split in energy, and those whose energies lie close to the
top of the hills will be so strongly split that the classification into levels
corresponding to the vibrational states in the localized minima is no
longer useful. For energies very much higher than the tops of the hills
the equation for the energy of the different states will go over asymptoti-
cally into those given by equation (4) for free rotation.
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A similar situation is encountered in ammonia, NH;.  If the molecule
were planar with the hydrogen atoms symmetrically placed, the symmetry
number would be six, and only one structural isomer would exist. If
the molecule is pyramidal, y = 3, two structural isomers could be
formed with distinguishable hydrogen atoms. Keeping the positions of
the hydrogen atoms fixed, these isomers differ in one having the nitrogen
atom above the other having it below, the plane of the hydrogens.
These configurations cannot be transformed into each other by rotation
alone. For both structures one of the normal coordinates corresponds
to displacement of the nitrogen normal to the plane of the hydrogen
atoms, and uniform displacement of the three hydrogen atoms in the
opposite direction.

For the planar structure the single minimum along this coordinate is
at the point where the nitrogen is in the plane of the three hydrogen
atoms. If the molecule has a pyramidal structure it means that there
are two minima, which will be symmetrically placed with respect to this
position in which the atoms are all in one plane. The maximum in the
plot of the potential along this coordinate will then be at the place where
the atoms are in one plane. 1f this maximum is sufficiently high the
vibrational levels of this coordinate may either be treated as doubly
degencrate, each of the two states of the level being allowed with one-
sixth of the rotational states, or one could forget ahout the degeneracy
and say that each of the levels combines with one-third of the rotational
states.

If, as is actually the case, the maximum separating the two minima
is very low, the levels will be split in energy due to the interaction of the
two isomeric positions, and one will observe, in the spectra, the dif-
ferent single states with different energies, each combining with one-
sixth of the rotational states. The energy spacing of the vibrational
states of this coordinate is not given by the simple vh, the lower states
occurring in pairs, noticeably closer in energy than the average spacing.
The contribution of this coordinate to In @ cannot be calculated by using
the simple In Q, formula, but must be calculated by direct summation
of the observed energies.



CHAPTER 9
MIXTURES OF GASES AND CHEMICAL EQUILIBRIUM

(a) Introduction. (b) Gaseous Mixtures. (c) Chemical Equilibrium.
(d) The Entropy of Isotope Mixing. (e) An Interpretation of the Equilib-
rium Equation. (f) Estimation of Equilibrium Constants.
9a. Introduction :

The laws of thermodynamics have been shown in the preceding chap-'
ters to be a consequence of the laws of mechanics. In considering a
gas composed of a mixture of two or more kinds of molecules the usual
methods of thermodynamics may be employed as a logical part of the
theoretical approach which has been developed here. In such a use of
the thermodynamic method it would be necessary only to use the fact
that, by definition, the thermodynamic properties of one perfect gas
are uninfluenced by the inclusion of another perfect gas in the same
vessel.

Similarly, the thermodynamic condition that the free energy be a
maximum at equilibrium leads to the well-known relationship between
the equilibrium constant and the difference in free energy of the products
and reactants of a chemical reaction.

Any statistical derivations of the equivalent statistical relationships
are, of course, essentially only repetitions of the thermodynamie proofs
in other language. Nevertheless we shall, in this chapter, show how the
methods of Chapters 5 and 6, if applied to a system containing more
than one kind of molecule, lead to the cquations for a mixture of gases.
We shall also derive the equations for the conditions of chemical equi-
librium by a variation of the same methods.

The equations for chemical equilibrium will be applicd to a mixture of
isotopes to show that the equilibrium in all chemical reactions, at high
temperatures, with the neglect of the effect of the differences in masses,*
is not altered by the presence of the isotopic differences between some
of the atoms of an element. The absolute entropy of mixing of the
isotopes is the same, per gram atom of element, whatever the state of
molecular aggregation.

A very simple interpretation of the conditions for chemical equilib-
rium will be demonstrated, and some short methods of estimating the
equilibrium constant will be discussed.

* See Problem 9. 1.
200
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9b. Gaseous Mixtures

A system consisting of N; independent molecules of type 1, Ng
independent molecules of type 2, - --, N; of type {, with the total
volume V and total energy E, will be considered.

The different types of molecules will have distinctly different quantum
states. A quantum state of the whole system is determined by the
number of molecules of the type ¢ in each of the quantum cells of this
type of molecule, for all values of the running index {. Analogously to
the method employed in Chapters 5 and 6, the phase space is divided
into regions indicated by two indices j and {. The region j¢ includes
a large number, Cj;, of cells available to the molecules of type ¢, each
having an energy lying between e¢;; and ¢;; + Aj;e. The part jt of the
system consists of the N;; molecules which are in the region ji. The
combinatory part of the problem is the same as that of Chapter 5, and
the entropy, Sj;, of the part system ji will be given by equation (6. 2).
The value of dS;;/dN;; will be given by equation (6. 3), which is

dS C' C“-
9. 1) —”=kln[—5={=1]gkln—2-.
dN; Nj N

in which the unity will be omitted under the assumption that we always
deal with conditions for which Cj;/Nj; is very large.

The total entropy of the system will be the sum of the entropies of
all conceivable regions, the sum of S;; over all values of jand of {. The
value of Nj;/Cj may be found by either the method of Chapter 5 or
that of Chapter 6. That of Chapter 5 was to make the total entropy
a4 maximum, subject to the conditions that the total energy and the
total number of particles remain constant. The only difference between
the one-component system treated previously and the present system is
that for this system the total number of particles of each kind must be
kept constant independently.

The limiting conditions are

9. 2) YN; =N,  (forall {’s),
i
(9. 3) z ZEM‘N)I‘ = E-
After multiplication of each of the equations (2) by a different constant

kay and the one equation (3) by kB, these are subtracted from the
equation for the entropy and differentiated with respect to Ny,

9 I
—_— S, — — kB N |=0.
(9. 4) N ;; it kzrargN i ?2 Ffar i
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The condition that the differential coefficient be zero for each value of
jt is the condition for the maximum of S.
The equations obtained are

(9. 5) NJ-‘, = Cj‘.e""f—"it

for each value of {. The a;'s will be different for each kind of molecule
¢. Each ais to be determined by the use of equation (5) in equation (2);
a; is seen to depend on N only, and in the same way as in a pure gas
of the same volume. The presence of the other molecules does not
affect the value of . The paramecter 8 is a constant of the system.

The subsequent manipulation is exactly the same as that of Chapter '

5. That the value of 8 is the same for each of the molecular species
insures a single temperature for the system. The entropy and cnergy
of the mixture are sums of the values for each species of molecule, and
for each species they have the same values as functions of volume and
temperature that they would have if the other molecular types were
absent from the vessel.

Since P = T(38/dV)g, from cquation (4. 35), we may define the
partial pressure P; as the pressure which would be exerted by the mole-
cules { in the same concentration N;/V at the same temperature in a
pure gas, and the total pressure P is the sum of the partial pressures
of the different molecular species,

kT
(9. 6) P=EP=7-EN.
[y [

The total pressure is just RT/V times the total number of moles of gas
present.

The quantities 4, H, and F are also additive sums of the values of
these quantities for the pure gases at the same concentrations or the
same partial pressures.

That thesc relationships must be obtained is obvious from the original
description of the system. The molecules were all presumed to be inde-
pendent of each other, except in so far as it was tacitly assumed that
they were in equilibrium with respect to the exchange of energy. This
interdependence assured uniformity of temperature throughout the
system. Their independence required that the properties of that
part of the system composed of one molecular species alone would be
the same as if it occupied the whole volume of the system by itself.

The method of Chapter 6 could as well have been used as that of
Chapter 8. The uniformity of temperature in the system would first
be deduced from the condition that all energy exchanges were assumed
to be allowed. For each species of molecule the value of u; must be
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constant in all parts of the system, but the values of the uy’s for the dif-
ferent kinds of molecules are entirely independent.

The equations for one particularly simple mixture of gases are worth
recording. If the different kinds of molecules are mechanically similar
in all their properties, and equal, or at least very nearly equal, in mass,
then the values of the partition functions Q; will be identical for all
values of {. In this case, for one mole of gas, (3_N; = Nj), the equa-

¢

tion for the total free energy of the system will be
9. 7) F =XNu = INkT(In Ny — In Q)
4 I3

from equation (6. 9) for the chemical potential p.
If the mole fraction x; = N;/Ny is introduced, the equation, per mole,
becomes

9. 8) F=RT(InNo—InQ + Xz Inx).
s

This differs from the free energy of the gas composed of one component
only by the additive RTX z; In z; which is always negative since the
mole fractions, z;, must, by definition, always be smaller than unity.
The entropy of the mixture of gases is greater by the additive
—RXx; In x;, which is positive.
The energy, E, and also H, Cy, and Cp, will be the same as for the
gas composed of only one component.

9c. Chemical Equilibrium

Methods similar to those of the last section may be employed to cal-
culate the conditions for chemical equilibrium in & system consisting of
a mixture of perfect gases. A gas composed of molecules of various
kinds will be investigated, but it will not be supposed that the number
of each kind of molecule is fixed. A chemical reaction will be con-
sidered to take place in the mixture, so that the numbers of molecules
of some kinds may grow at the expense of those of other species. The
reaction will be written

9. 9) —mgd — mpB — -+ = m,G 4+ mH 4 -

The m's are small integers, so that the value of m; for one of the mole-
cules ¢, which is a reactant of the reaction as written, is the negative of
the number of molecules entering into the chemical reaction. m; is
then the number of molecules of kind { which are produced in the
reaction as written. For instance, for the simple reaction 2H3; + O =
2H30 the value of my, is —2, that of mo, is —1, and that of mg,o is 2.
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If the molecule of type { contains n, atoms of kind X, then the
stoichiometry of equation (9) demands that

(9. 10) X mng =0, forallz's.
:

The choice of the m’s of the left-hand side of the reaction as negative
quantities enables us to express this condition in the form of one sum.
Equation (10) is merely the mathematical statement that the total
number of atoms of each element remains constant during the course
of the reaction. The total number of atoms of the element X is

(9. 11) Nz = sznz:.
4

One considers divisions of the system into parts consisting of the
Nj; molecules of type ¢ in Cj; cells of the same energy, ¢;. For the
total number of atoms of the element X one has

(9. 12) Nz = ; ; 'nerj‘-.

The total energy of the system may be written as
(9. 13) E = Zr E. sz-NJ“-.
J

Hitherto the convention had been adopted that for each molecule
the energy is measured from that of the lowest quantum state. The
chemical reaction (9) is accompanicd by a definite energy change. In
order to account correctly for this cnergy difference between the prod-
ucts and reactants it is necessary to adopt some common zero point for
the encrgy of the molecules. For the purposes of this particular reac-
tion it is sufficient that the cnergies of the lowest states, eq, be so
chosen that

? 'm‘-é()‘ = AE,

where Ae is the energy absorbed in the reaction as written at 0°K.

In general the most logical convention appears to be to choose all energies so
that the encrgy of every element is zero at the absolute zero of temperature,
that is, to make the lowest quantum state of the elements zero. In calculating
the free energies and other thermodynamic properties of individual molecules,
however, it is often convenient to do as we have indicated in the past, namely,
to choose the energy of the lowest state of each molecule as zero, since the calcu-
lated values are then not subject to change if redeterminations of the heats of
reactions are made. In the absence of complete thermodynamic and spectral
data it is not practical as yet to adopt a uniform convention.

In all discussions involving the equilibrium in chemical reactions it
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will be assumed that the energies of the lowest quantum states of the
moleccules are so chosen that the energy of the reaction is correctly
accounted for. From section 6f we know that an alteration in the
energy scale involves a multiplication of the partition function by a
factor ¢/*7, and a linear additive change in the functions E, F, A, and
H, but no alteration in the values of S, Cy, and Cp, at a given temper-
ature.

Returning now to the system under discussion, the entropy S;; for
the part j¢ of the system is calculated as before. The sum of S; over
all values of j and of { gives the total entropy, which will be a maximum
at equilibrium, subject to the conditions that the total number of
atoms of each element is constant, and that the total energy of the
system is constant. Equations (12), each multiplied by a constant
ke, and equation (13), multiplied by kg, are subtracted from the total
entropy. The differential coefficient of this with respect to every N
is zero when the entropy is a maximum,

‘]
— 2 Z (S — kga,nz;N s — kBeNj) = 0.

9. 14
(9. 14) N, =2

With (1) for 3S;/0Ny;, this becomes

. 15) FInSE < k Eaun,s + kb,
NR z
(9. 16) N_Jﬁ = e‘f"""'r"‘:?,

at

This equation is of the familiar form of equation (5) with Xa,nz
replacing a;. The thermodynamic properties of the system are the
sums of the properties of the individual gases as with all mixtures of
perfect gases, but a definite relation is prescribed between the a;’s of
the different molecule kinds. Previously the known number of mole-
cules N; has been used to evaluate the a;’s. The relationship that
op = Y a,n, imposes a relationship on the values of the Ny’s and this
restriction we shall show to be the mass-action law.

One may identify Y azng with —u/kT, in which p; is the chemical

z
potential of the molecules of kind ¢ in various ways. For instance, one
knows that, for the part j¢ of the system, u; must be the same as for all
parts of the system, so that

9. 17) (ﬁif)

RS (o
I ._T(-—’f = — kT <%,
WNulvr * aN;)

N)l'
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which by comparison with (15) shows that
(9. 18) My = -k-TZazn,,.
z

The quantity a. is some characteristic of the X atoms which is con-
stant throughout the system. =. is the number of X atoms in the
molecule {. If the monatomic gaseous element X were in equilibrium
concentration in the system, for that molecular species ¢, only for one
X would nz; differ from zero, and its value would be unity. For such a
case the interpretation of the quantity a is clear, namely, a; = —g./kT.
This interpretation is really general, —kTa;, is the chemical potential
of the atoms of the element X in the system, and from this value the
equilibrium concentration of the monatomic element in the system can
be calculated. We may write (18) as

(9. 19) My = XMgpps,

the chemical potential of the molecules is the sum of the chemical
potential of the atoms composing them, and the chemical potential of
the atoms of any one element is a constant for all parts of the system.

In Chapter 6 the equation equivalent to (16) combined with (18)
was used to caleulate u by a relationship
(9. 20) TNy =N =" Q, @ = LCjipe ™,

J 2
in which Q, was called the partition function of the molecule. For the
reacting mixture, relationship (19) between the values of p; for the
different kinds of molecules puts a restriction on the values of the
N/s, which are no longer independent. We shall now proceed to
show the nature of this restriction.

If the equilibrium product for the chemical reaction (9), in terms of
the numbers of molecules, is formed, and calculated by the use of
equations (20) and (19), the w’s cancel in the expression, and the
equilibrium product is obtained as a function of the @;’s alone. The
steps are:

Ky = IrIN = eFmin/tT l;[Q‘,-r,

from (20). Using (19), one sees that
zr:mrﬂr = L:Fsztmr"zh

but from (10), that Xm;n,; = 0, one obtains Im;u, = 0, and
3 3

(9. 21) KN = l;INf"r = I;IQ‘-'f.
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Whereas the left-hand side of this relation depends on the numbers
of molecules only, the right-hand side is independent of the concen-
tration.

Equation (21) gives a relationship hetween the values of N; which
must be fulfilled for every chemical reaction with respect to which the
system is in equilibrium. The fact that Ky is independent of the den-
sities is known as the mass-action law.

This equation may readily be transformed into the usual thermo-
dynamic relation between the equilibrium constant in terms of the pres-
sures, and the difference in standard frec energy of products and reac-
tants. Let N be the number of molecules of a gas which, in the volume
of the system, would cxert unit pressure at the temperature of the
system. The partial pressure P; of the molecules { will be N;/N  The
value pf of the chemical potential of the { type molecules at unit pres-
sure is related to @, and N by

O,

(9. 22) % =e 't

from equation (20).

The sum of the chemical potentials of the products at unit pressure,
minus the sum of the chemical potentials at unit pressure of the reac-
tants of the chemical reaction (9), is

9. 23) A = T mpf,
'y

and may be called the change in the chemical potential at unit pressure
for the reaction, or the standard chemical petential change.

Using (22) and (23) with (21), one obtains for the equilibrium con-
stant, in terms of the pressures,

N, [ ¥ Q!)mr —Au0/kT
( ¢ = ! = — = — - .
{9. 24) Kp lrlp? I}(N) Irl(N €
The free energy per mole is just Avogadro’s number times the chemical
potential, F$ = Nouf, and the change of free energy per mole at unit
pressure in the reaction is AF® = N,Au®, so that (24) can be written as
(9. 25) AF® = —RTIn Kp.

This is the usual thermodynamic form for the relationship between the
free energy change in & chemical reaction and the equilibrium constant.

The whole derivation given here is unnecessarily long. One might
at once use the condition that the total free energy of the system
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must be a minimum at equilibrium. Since for the chemical equation
(9) the ratio of the number of molecules of the different species pro-
duced in the reaction is fixed as the ratio of the m;’s, one can set
dN; = midn. At equilibrium

oF oF
.2 S e 0=Ym o = _
(®.27) an Zme N, = Mo

From e